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Abstract. I explore how doubt affects economic outcomes in strategic settings. Doubt is
defined as a revision of subjective beliefs over payoff-relevant statistical models consistent with
objective evidence, leading to consideration of more extreme possibilities. This work builds upon
research on Self-Confirming Equilibrium (SCE) with ambiguity-averse players developed by Batti-
galli, Cerreia-Vioglio, Maccheroni, and Marinacci (2015), extending it to games with payoff uncer-
tainty and exploring the consequences of differences in the perception of ambiguity. The smooth
ambiguity model of Klibanoff, Marinacci, and Mukerji (2005) is applied, for it allows clear sep-
aration of attitudes toward ambiguity from its perception. The key finding is that players with
heightened awareness of uncertainty present in their decision environment are more likely to ex-
hibit status quo bias, favoring past behavior and leading to objectively worse outcomes. This
occurs even when ambiguity aversion is mild. This result is demonstrated through a comparative
statics exercise on the equilibrium set, where players’ beliefs are adjusted to reflect varying degrees
of ambiguity perception. An application to a simple contracting game illustrates how ambigu-
ity aversion and perception can lead to market shutdowns, such as chronic worker shortages or
underinvestment, in spite of mechanisms designed to mitigate these issues.
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1. introduction

Doubt is a common occurrence in decision-making. Worldly wisdom suggests doubt is desirable,
for it helps to carefully evaluate all available information, and act upon considerate judgment
thereof. Second-guessing oneself is thus arguably reasonable within environments characterized
by persistent uncertainty to the extent that this may aid the deliberation process. I clarify the
game-theoretic consequences of doubt, which can be informally defined as the revision of subjective
beliefs over plausible statistical models relevant to a decision problem, to consider a larger set of
possibilities consistent with objective evidence. Such a revision is not put into formal relation with
the standard rules of Bayesian updating. It serves exercises of model equilibrium comparative
statics in the event of believing that more state distributions are possible than was previously
thought. The formal model developed in the thesis combines elements from Decision Theory and
Game Theory, building on the existing literature of equilibrium analysis with ambiguity averse-
players.
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1Translation: “No wind is favorable to the sailor who knows not the harbor he seeks.” 
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The relevance of this topic can be understood from a historical perspective. The enthusiastic
intellectual attitudes and ingenuity that spread at the time of the Industrial Revolution fostered the
drive for innovation that led to marvelous inventions. In turn, this brought to unforeseen increases
in the marginal efficiency of capital. Almelhem et al. (2023) recently provided robust evidence in
support of this explanation for modern economic growth, attributable to Mokyr (2017). Burn-
Murdoch (2024) instead presented evidence that Western cultures are currently abandoning their
culture of progress, turning “toward one of caution, worry and risk-aversion”, which echoes the
notion of doubt described above. In parallel with Mokyr’s argument, he observes that this shift
has been accompanied by increasingly sluggish growth, suggesting a connection between these
phenomena. In what follows, I offer a solid framework to rationalize this hypothesis. Before,
however, we must make a series of nontrivial modeling decisions on which tools to use to represent
these behavioral traits. The proposed notion of doubt does not easily lend itself to a proper
formalization.

A relatively straight-forward approach is to adapt the framework of Battigalli et al. (2015) to
study equilibrium sets constrained by alternative sets of conjectures, carefully constructed to reflect
varying degrees of ambiguity perception. Note that beliefs cannot truly abstract from the decision
environment, as the probabilistic weight assigned to alternative hypotheses necessarily depends
on what the latter are. It may then seem unappealing to consider preferences whose subjective
probabilistic component is constrained a priori. However, the analysis reveals that the extent
of ambiguity perception indeed has normative implications. Since this is the approach we take,
we will need to combine contemporary findings from Game Theory, particularly Self-Confirming
Equilibrium analysis, with a solid Decision-theoretic model for representing uncertainty averse
preferences.

Following the abstract axiomatization of Expected Utility by von Neumann and Morgenstern
(1944), a staple within the theory of Choice Under Risk, Decision Theory has long been concerned
with modeling Choice Under Uncertainty, where the latter is interpreted in the sense of Knight
(1921). The ground-breaking leap of Savage’s (1954) Subjective Expected Utility (SEU) represen-
tation was challenged by field and thought experiments in the spirit of Ellsberg (1961). The first
proposals within the Rational Choice Theory approach to represent preferences with alternative
attitudes toward this type of uncertainty appeared starting with Schmeidler (1986) and Gilboa and
Schmeidler (1989). Then, a vast literature blossomed, whose works all share the underlying com-
mon motivation to accommodate for ambiguity aversion. The ensuing representation Theorems
account for this feature but are often limited operationally in that they do not cleanly separate
attitudes toward ambiguity from its perception. The representation of Klibanoff et al. (2005) is a
notable exception, which allows the modeler to ask questions about the effects of varying degrees
of both uncertainty aversion and perceived uncertainty. While risk and uncertainty attitudes shall
be regarded as stable personal traits, elicited through consistent revealed preferences, perception
can be elicited but may vary upon the context of the decision problem.

At the same time and in the same opus, von Neumann and Morgenstern (1944) put forth the
fundamental elements for the development of a new framework to deal with economic problems
more rigorously and flexibly: Game Theory. This field of study proved extremely prolific, and
allowed the formalization of a rich set of solution concepts. While the most widespread and appre-
ciated notions in the theoretical and applied literature may be Rationalizability (Bernheim, 1984;
Pearce, 1984) and Nash (1950) Equilibrium, growing attention has been given to Self-Confirming
Equilibrium, learning dynamics, and their interplay (Battigalli et al., 1992; Fudenberg and Levine,
1993, 1998). Steady-states of a learning process are characterized by stationary strategy profile dis-
tributions which are optimal under the equilibrium private information and beliefs of each player.
Self-Confirming Equilibrium is the solution concept we apply for it forms a natural domain to ex-
plore the relationship between decision-makers, their knowledge, and behavior under uncertainty
(Battigalli et al., 2015).
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The reader may question the appropriateness of such theoretical approach for the problem
at hand. Within the rational choice theory, decision models shall capture tolerable economic
behavior. Starting with a minimal set of assumptions that appeal to some “normative” intuition,
a utilitarian representation of preferences is derived through logical inference. Such assumptions
are always held to a standard of rationality, albeit the latter term may prima facie seem quite
vague. For instance, the transitivity assumption present in almost all economic models has been
predicated upon Money Pump arguments (Gustafsson, 2022). Hence, it would be a maintained
normative assumption because of its desirability and not due to its supposed veracity. Indeed, it has
been pointed out that such arguments are often not very compelling in motivating the normative
desirability of transitivity.2 Conducting ourselves a formal investigation of such issues is beyond the
scope of the discussion. Nevertheless, Gilboa et al. (2010) provide us with an intuitive motivation
for the axiomatic approach. Imagine a decision-maker is held accountable of her decisions; would
she necessarily feel embarrassed if asked to explain her reasoning?

This approach differs from Behavioral Economics, where traditional economic assumptions
are typically traded off in favor of reliable psychological and neurological foundations to decision-
making, thus introducing notions of biases or entertaining that individuals’ rationality is bounded.3
Consider, for instance, a traditional consumer problem under constraint. Traditionally, enlarging
the choice set of available alternatives shall weakly improve the consumer’s welfare. Following a
behavioral approach, however, we may take into account the neurological and psychological evi-
dence that the so-called Set-Size Effect is nonmonotonic.4 While behavioral models offer valuable
insights, this is not the approach followed here; the aim is to reflect on the implications of normative
models of ambiguity aversion and perception.

The representation of Klibanoff et al. (2005) does not impose restrictions on the elicited subjec-
tive second-order probability assigned to models compatible with the evidence. Since the precise
shape of the representation depends on preferences themselves, the analysis confronts decision-
makers who ultimately differ in their “taste” in the processing of information. Hence, it may not
be concluded that more naïve judgments are irrational. They may be attributed to mood, intu-
ition; perhaps animal spirits have an influence on beliefs (Keynes, 1936; Akerlof and Shiller, 2009).
Still, it is sensible to confront decision-makers who differ in their naïveté when confronting uncer-
tain environments. Results help highlight the role of human attitudes in economic problems even
within standard economic frameworks. Simple formal conditions on beliefs needed to uphold some
equilibria rather than others may even lead, inter alia, to a better understanding of the effects of
potentially ambiguous communication between institutions and the public.

Therefore, I explore how markets can plausibly get stuck into “certainty traps” without de-
partures from (subjective) rationality. The Smooth Self-Confirming Equilibrium solution concept
introduced by Battigalli et al. (2015) is applied to perform a comparative statics exercise on the
equilibrium set of a game with feedback. Formally, I compare alternative sets of beliefs that differ
in their perceived uncertainty. I leverage an example showing how more awareness of uncertainty
(a doubt, or more intuitively a certainty crisis) can bring about objectively worse equilibrium
strategies. The analysis is generalized to encompass games where own payoff-relevant information
is not fully observable to every player.

In the rest of this work, I adopt whenever possible the formal notation used by Battigalli et al.
(2023) and specify when is done otherwise. In Section 2, I provide a brief discussion of decision
models used to deal with ambiguity attitudes, focusing on the representation of Klibanoff et al.
(2005), its positioning within the literature, and the motivation for applying this criterion. I present
a general definition of ambiguity-neutral (or Bayesian) Self-Confirming Equilibrium for games

2For instance, they “require a non-sequitur that calls for the additional hypothesis that a [decision-maker] willingly
participates in a process that leaves him worse off”. For a nuanced discussion of the normative appeal of transitivity
and the treatment of intransitive preferences, see Fishburn (1991).

3These models are thus said to be “descriptive”: they translate empirical regularities into assumptions, whose
reliability rests on the modeler’s trust that they are natural, i.e. do not depend on contextual factors.

4See for instance Iyengar and Lepper (2000) and Seuanez-Salgado (2006).
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with feedback and payoff uncertainty, and its generalization to games with ambiguity attitudes
introduced by Battigalli et al. (2015). In Section 3, I define ancillary games characterized by the sets
of conjectures players may be assumed to hold when entering the game; these are used to produce
results concerning equilibrium inclusion that complement the Theorems on comparative ambiguity
aversion of Battigalli et al. (2015). In Section 4, I present an application of this comparative statics
exercise to a simple contracting game that resonates with the literature on adverse selection. In
Section 5, I draw conclusions and discuss limitations and possible extensions to my work. All
proofs are contained in the Appendix.

2. ambiguity attitudes and self-confirming equilibrium

Throughout the following, I analyze the strategic form of a finite multistage game with payoff
uncertainty, feedback and ambiguity attitudes within the formal framework developed by Battigalli
et al. (2015) (hereon, BCMM). Section 2.1 details the structure of the game and introduces notation.
It is convenient to consider the strategic form of the dynamic game and assume that, upon entering
the game, players choose a fully specified strategy (covert commitment) that is then automatically
implemented as the play unfolds.

It must be clear that this analysis is not equivalent to the extensive-form analysis of the same
game whenever players are not ambiguity-neutral decision-makers. Dynamic consistency underpins
the notion that “we can analyze the essential aspects of Self-Confirming Equilibrium for multistage
games with feedback by looking at the strategic (or normal) form [since] any fixed strategy profile is
a Self-Confirming Equilibrium of [the extensive-form game] if and only if there is a Self-Confirming
Equilibrium [of the strategic form] inducing the same terminal history”.5 (Battigalli et al., 2023).
A game with non-Bayesian decision-makers may not satisfy this property. If the intrapersonal
version of the One-Deviation Principle fails, as is the general case for players averse to ambiguity,
ex ante optimal strategies do not correspond to unimprovable strategies in the sense of Battigalli
et al., 2019a, meaning that sophisticated players in extensive-form games who cannot fully com-
mit to carrying out the strategy established ex-ante may have a strict preference for deviating
somewhere along the path (provided that at least one player moves more than once). At the
same time, this may not rule out altogether the existence of equilibrium profiles, which are also
sequentially optimal.

Nevertheless, the strategic form analysis is both convenient from an analytic standpoint, and
meaningful in classes of games where covert commitment is credible and in the special case of static
games (degenerate multistage games where all players are active only at the root). More broadly,
it is relevant in light of the relationship between the Self-Confirming Equilibrium solution concept
and learning dynamics: monotonicity results regarding the strategic form stem from the influence
ambiguity aversion has on learning regardless of dynamic inconsistency, as more uncertainty averse
agents tend to stifle their experimentation after a few repetitions of a game (Battigalli et al.,
2019b).

2.1. Game description

I adopt the Nash mass action (or anonymous interaction) view detailed in BCMM, and general-
ize their definitions of Smooth and Maxmin Self-Confirming Equilibrium to a setting with payoff
uncertainty. According to the anonymous interaction interpretation, each player role 𝑖 ∈ 𝐼 rep-
resents a large population, from which an agent is “drawn at random and matched to play the
game [with agents drawn at random from all other roles 𝑗 ≠ 𝑖], then separated and rematched
with (almost certainly) different opponents. After each play in which he was involved, an agent
obtains some evidence on how the game was played.” This conveniently allows to assume that
any one player always only focuses on the present stage and disregards future payoffs (“myopic”

5The two equilibrium strategy profiles are said to be “realization-equivalent” in this case.
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agents)—because she assigns negligible probability to the event of rematching with the same per-
son twice. In addition, we assume uncertainty stems both from coplayers’ strategies (𝑆𝑖)𝑗≠𝑖, and
their private information types (Θ𝑖)𝑗≠𝑖 (along with nature Θ0). The uncertainty space is thus
𝑆−𝑖 × Θ−𝑖 × Θ0, where 𝑆−𝑖 ∶= ×𝑗≠𝑖𝑆𝑗 and Θ−𝑖 ∶= ×𝑗≠𝑖Θ𝑗, and we only consider finite sets for
simplicity. As described above, I restrict the analysis to the strategic-form of the game. Thus
analogously to BCMM, with the addition of information types, the rules of the game make up
game form with feedback6

⟨𝐼, Θ0, 𝑞0, (Θ𝑖, 𝑞𝑖, 𝑆𝑖, 𝑀𝑖, 𝐹𝑖)⟩
• 𝐼 is the (finite) set of player roles;

• Θ ∶= Θ0 × ⨉𝑖∈𝐼 Θ𝑖 is the set of information type profiles —which is relevant to the game
form to the extent that information determines the (outcome associated with each) terminal
history;

• 𝑞 ∶= (𝑞𝑖)𝑖∈𝐼∪{0} is the profile of (exogenous) information type distributions;

• 𝑆𝑖 ∶= ⨉ℎ∈𝐻 𝒜𝑖(ℎ) is the individual finite strategy set of a player 𝑖 ∈ 𝐼 ;

• 𝑀𝑖 is the set of messages player 𝑖 ∈ 𝐼 can observe ex post (whenever a play of the game is
terminated);

• 𝐹𝑖 ∶= 𝑓𝑖 ∘ 𝜁 ∶ Θ × 𝑆 → 𝑀𝑖 is the private strategic form feedback function of 𝑖 ∈ 𝐼 .

The extensive form of the game is not very relevant to us; nonetheless, I offer a brief description
to foster intuition and clarify notation. For each 𝑡 in a finite number of periods 𝑇 , there is a
non-empty subset 𝐽𝑡 ⊆ 𝐼 of players who are active in the sense that they have to choose an action
during that turn. Every sequence of profiles of actions taken from the beginning of the game draws
a map, or history, through the nodes crossed during the game. The root of the game is the empty
sequence. As players choose their actions at 𝑡, they reach history ℎ = (𝑎1, 𝑎2..., 𝑎𝑡) ∈ 𝐻. 𝐻 is the
set of non-terminal histories, i.e., all decision nodes where there are still actions to be chosen by at
least some player, and the game has not terminated yet. By contrast, 𝑍 denotes the set of terminal
histories. Clearly, 𝐻 ∪ 𝑍 = 𝐻 (while their intersection is empty). The action set of each player 𝑖 is
𝐴𝑖. We may however want to allow for the specific set of available moves at any point in the game
to depend on how the game has unfolded so far. Thus we denote by 𝒜𝑖 ∶ 𝐻 ⇉ 𝐴𝑖 the feasibility
correspondence of 𝑖, so that by definition 𝑆𝑖 contains all possible plans of 𝑖, i.e. prescriptions on
which actions she should carry out among those available depending on the contingency. 𝜁 ∶ 𝑆 → 𝑍
denotes the path function, which associates any profile of strategies to the terminal node it induces.

The feedback structure of the game form is described by the profile of functions 𝑓𝑖 ∶ Θ×𝑍 → 𝑀𝑖.
When these are combined with the path function, we obtain profile 𝐹 = (𝐹𝑖)𝑖∈𝐼 which gives rise, for
each 𝑖 ∈ 𝐼, 𝜃𝑖 ∈ Θ𝑖 and pure strategy 𝑠𝑖 ∈ 𝑆𝑖, to an ex-post information partition of the uncertainty
space,

ℱ𝑠𝑖,𝜃𝑖
= {𝐹 −1

𝑠𝑖,𝜃𝑖
(𝑚𝑖) ⊆ Θ0 × Θ−𝑖 × 𝑆−𝑖 ∶ 𝑚𝑖 ∈ 𝑀𝑖} (1)

Battigalli et al. (2015, 2016, 2023) offer thorough discussions of general feedback structures, to-
gether with definitions of games with feedback and ambiguity attitudes. Importantly, it is the case
that a decision-maker’s (partial) identification of the plausible statistical models does not hinge
on (is independent of) preferences and ambiguity attitudes, i.e. it can be described relying solely
on the game form. On the other hand, information types distributions 𝑞 are needed to derive the
objective distribution of messages for each player given the decision functions mapping types into
strategies.

The payoff of a player 𝑖, 𝑢𝑖 ∶ Θ × 𝑍 → ℝ, depends on the true information types of the players
(𝜃𝑖)𝑖∈𝐼 and the terminal history 𝑧 ∈ 𝑍 that is reached at the end of game. The payoff function itself

6The notation is explained below. More detail can be found in Battigalli et al. (2023).
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is the composition 𝑢𝑖 ∶= 𝑣𝑖 ∘ 𝑔 of an outcome function 𝑔 ∶ Θ × 𝑍 → 𝑌 and a Bernoulli (or vN-M)
utility 𝑣𝑖 ∶ Θ𝑖 ×𝑌 → ℝ. The strategic form payoff function of each 𝑖 ∈ 𝐼 is 𝑈𝑖 ∶= 𝑢𝑖 ∘ 𝜁 ∶ Θ×𝑆 → ℝ.
We so obtain the strategic form 𝐺 = 𝒩(Γ) of a finite7 multistage game with payoff uncertainty
and exogenous type distributions Γ:

(𝐺, 𝐹) ∶= ⟨𝐼, Θ0, 𝑞0, (Θ𝑖, 𝑞𝑖, 𝑆𝑖, 𝑀𝑖, 𝐹𝑖, 𝑈𝑖)𝑖∈𝐼⟩ (2)

The ensuing structure has an evident mathematical similarity to (simple) Bayesian games with
exogenous type-independent beliefs. In this framework, however, it must be understood that the
game with payoff uncertainty is simply endowed with exogenous information-type distributions.8
Players are assumed to know 𝐼, 𝑆, 𝑀𝑖, 𝐹𝑖, 𝑈𝑖 and, importantly, 𝜃𝑖. The overall interactive situation
is instead not assumed to be common knowledge among the players. Additionally, players will not
always be assumed to be Bayesian. An important assumption that is maintained9 in the following
is that of Observed Payoffs:

Definition 1 (Observed Payoffs). Feedback function 𝐹𝑖 satisfies Observed Payoffs relative to
payoff function 𝑈𝑖 if payoff only depends on feedback, that is, if

∀(𝑠𝑖, 𝜃𝑖) ∈ 𝑆𝑖 × Θ𝑖,∀(𝑠′
−𝑖, 𝜃′

−𝑖), (𝑠″
−𝑖, 𝜃″

−𝑖) ∈ 𝑆−𝑖 × Θ−𝑖,
𝐹𝜃𝑖,𝑠𝑖

(𝜃′
−𝑖, 𝑠′

−𝑖) = 𝐹𝜃𝑖,𝑠𝑖
(𝜃″

−𝑖, 𝑠″
−𝑖) ⇒ 𝑈𝜃𝑖,𝑠𝑖

(𝜃′
−𝑖, 𝑠′

−𝑖) = 𝑈𝜃𝑖,𝑠𝑖
(𝜃″

−𝑖, 𝑠″
−𝑖)

Finite game with feedback (𝐺, 𝐹) satisfies Observed Payoffs if the feedback functions of every 𝑖 ∈ 𝐼
do.

In simpler terms, this property of feedback requires that players are always able to discern
their realized utility. As will be discussed below, this fundamental assumption underpins the
monotonicity results in BCMM because it ensures measurability of the section of the payoff function
at the strategy that has been played in the long-run. This fact extends seamlessly to payoff-
uncertain settings. As per their discussion, while this assumption may be reasonable in many
games of interest, it is not to be taken for granted a priori. For instance, if players had altruistic
motivations with regard to others but could not directly observe their internal utility index, this
assumption would be quite far-fetched. The description of the rules of the game is complete. Next
I introduce some decision criteria used to deal with ambiguity attitudes. Through these, we will
revisit the traditional, Bayesian definition of Self-Confirming Equilibrium under payoff uncertainty,
allowing the analysis of broader patterns of behavior.

2.2. Preferences and decision criteria

The representation of behavior in uncertain environments requires a decision-maker (DM) to be able
to rank acts that yield (possibly risky) consequences dependent upon each state of the world, whose
probabilities are unknown. In our setting, an individual player of type 𝜃𝑖 ∈ Θ𝑖 from population
𝑖 ∈ 𝐼 is faced with the choice of a strategy 𝑠𝑖 ∈ 𝑆𝑖. The outcome of any such strategy is uncertain
and depends on the choices and types of coplayers. The uncertainty space of this choice is thus
described by the Cartesian Product of the sets of other agents’ strategies, private information
types, and residual uncertainty: 𝑆−𝑖 × Θ−𝑖 × Θ0. The DM attaches to each strategy 𝑠𝑖 a subjective

7All sets that are part of the structure are finite.
8The problem of terminology in Game Theory is a tricky one. Harsanyi (1967, 1968a,b) originally introduced the

notion of Bayesian Games and Bayesian Equilibrium. His definition is appropriate to analyze game structures that
contain a unique profile of prior beliefs over a relevant uncertainty space. In our context, the word “(non-)Bayesian”
is used to denote the decision attitudes of these kinds of players. However, we shall not speak of a Bayesian game,
because we allow for profiles of sets of priors, and therefore, if players are not ambiguity neutral, i.e. they do not
evaluate events according to their predictive probability (cfr. Section 2.2), there is not an evident way to update
their beliefs according to Bayes’ rule.

9It will be stated explicitly whenever we do not make this assumption.
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value, denoted 𝑉𝜃𝑖
(𝑠𝑖), parametrized by her tastes, characteristics and beliefs. To directly relate the

player’s decision problem to a framework of decision under uncertainty, this outcome uncertainty
space may be interpreted as the grand state space discussed e.g. in Gajdos et al. (2008) and Gilboa
and Marinacci (2013). Beliefs regarding the state space are constrained solely by the objective
information an agent possesses.

Savage (1954) axiomatized the well-known SEU criterion, which extended the classical Expected
Utility framework used to analyze lotteries with known probabilities to the more general case of
Knightian uncertainty, eliciting the DM’s subjective probability (a belief over states of the world)
by requiring that he be able to (consistently) rank bets. Applications of this model have proved
incredibly prolific in Game Theory and Economics. An alternative axiomatization of the same
decision criterion in a more flexible setting is due to Anscombe and Aumann (1963). However, the
thought experiments proposed by Ellsberg (1961) challenged (the normative desirability of) the
SEU criterion, and led to the formulation of decision models whereby, even assuming the DM had
a unique probabilistic model (the equivalent of a lottery) in mind for the problem at hand, faint
conviction in such model could drive her to avoid uncertainty. This critique conflicted with one
of Savage’s postulates, the “Sure Thing Principle”, and correspondingly with the Independence
axiom in the Anscombe-Aumann formulation.

Ellsberg’s first experiment involves two urns, 𝐼 and 𝐼𝐼 , containing 100 balls each. All balls are
either white or black; in Urn 𝐼 there are 50 black and 50 white balls, whereas nothing is known
about the composition of Urn 𝐼𝐼 . A DM must choose an urn; then, a ball is drawn from each of
the two urns, and the DM is given a prize if the ball extracted from the urn of her choice is black.
After this, the balls are put back in their respective urn, and the DM must choose an urn again; the
draw is repeated, but the new prize is given to her only if the ball is white. Oftentimes, the known
bet of urn 𝐼 is preferred in both cases, a phenomenon that is incompatible with the evaluation
of acts through a unique, additive probability measure. Allowing for the decision patterns that
emerged in Ellsberg’s experiments necessarily requires abandoning at least some of the properties
of the SEU representation. A variety of approaches have been proposed to deal with this type
of decision-making. These include considering non-additive probabilities or capacities, allowing
for multiple subjective probability measures, and incorporating context-dependent beliefs. I begin
by introducing some decision models that explore these possibilities. The overview will provide
support in favor of the specific decision criterion adopted for the game-theoretic analysis.

The first axiomatization of a non-Bayesian decision model, which does not impose additivity on
the DM’s elicited subjective probability was the Choquet Expected Utility (CEU) representation
of Schmeidler (1986, 1989). By restricting the Independence axiom of the Anscombe-Aumann
formulation to comonotonic acts, i.e. acts whose ranking is independent of the state of the world,
all acts are evaluated by means of a subjective capacity, through Choquet integration (Choquet,
1953). Nonadditivity of capacities allows a DM to express mild confidence in the relative likelihood
of events. Schmeidler also showed that, if a DM has preferences for hedging against uncertainty,
the capacity itself is endowed with a peculiar convexity property, which makes Choquet integration
over the capacity akin to minimization of the integral over the probability measures in the core.
The core is the set of additive probabilities whose lower bound on any measurable event contained
in the event algebra is given by the value of the capacity itself. There are, however, situations in
which the objective information in possession of the DM lets her entertain a set of plausible prior
beliefs that does not constitute the core of any capacity.10

Gilboa and Schmeidler (1989) further relaxed the Independence axiom, restricting it to mixing
with lottery acts, i.e., acts whose consequences occur with known probabilities. Together with
uncertainty aversion, this axiom leads to their Maxmin Expected Utility (MEU) representation.
This model ranks acts according to their value in the worst-case scenario envisioned by the DM.
In any decision environment, the DM deems possible some set of probability models, and this set
is constrained by objective information. Let Σ̂ represent such objective information. Then, in our

10See the example at p. 200 in Gilboa and Marinacci (2013).
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game-theoretic setting, the DM can deem possible any ̂𝜋 ∈ Σ̂ ⊆ Δ (𝑆−𝑖 × Θ−𝑖 × Θ0). A frequentist
MEU DM, who infers the probability of events strictly from their long-run relative frequency, and
considers all possibilities that to her knowledge are compatible with her objective information,
would select strategy 𝑠𝑖 ∈ 𝑆𝑖 if

∀𝑠′
𝑖 ∈ 𝑆𝑖, min

𝜋̂∈Σ̂
𝑈𝑖(𝑠𝑖, 𝜃𝑖, ̂𝜋) ≥ min

𝜋̂∈Σ̂
𝑈𝑖(𝑠′

𝑖, 𝜃𝑖, ̂𝜋) (3)

where
𝑈𝑖(𝑠𝑖, 𝜃𝑖, ̂𝜋) = ∫

Θ0×Θ−𝑖×𝑆−𝑖

𝑈𝑖 (𝑠𝑖, 𝜃, 𝑠−𝑖) ̂𝜋 (d𝜃0, d𝜃−𝑖, d𝑠−𝑖) (4)

is the Bernoulli utility of 𝑠𝑖 under a risky but certain probability model ̂𝜋 (a lottery). The above
can often be reduced to

𝑈𝑖(𝑠𝑖, 𝜃𝑖, ̂𝜋) = ∑
(𝜃0,𝜃−𝑖,𝑠−𝑖)∈Θ0×Θ−𝑖×𝑆−𝑖

𝑈𝑖 (𝑠𝑖, 𝜃, 𝑠−𝑖) ̂𝜋(𝜃0, 𝜃−𝑖, 𝑠−𝑖) (5)

since typically only models characterized by finitely many consequences are considered. This is
our case because game 𝐺 is finite. When ̂𝜋 is a Dirac measure 𝛿(𝜃0, 𝜃−𝑖, 𝑠−𝑖) on some deterministic
profile, 𝑈𝑖 is the vN-M utility of the certain outcome induced by that profile, which we have
introduced as part of the game description in (2).

Criterion 3 is flexible and intuitive, if extreme, and motivates the MSCE definition of Section 2.3.
It has been pointed out in the literature that it is not obvious why such a “paranoid” attitude shall
characterize a DM who dislikes uncertainty. As stated by Gilboa and Marinacci (2013), however,

“An individual who satisfies the axioms [of Gilboa and Schmeidler] can be thought
of as if he or she entertained a set 𝐶 of priors and maximized the minimal expected
utility with respect to this set. Yet, this set of priors need not necessarily reflect the
individual’s knowledge. Rather, information and personal taste jointly determine the
set 𝐶. Smaller sets may reflect both better information [or, we may add, more naïvete]
and a less averse uncertainty attitude. ”

The MEU model thus allows the DM to restrict her attention to a subset of the models which are
not contradicted by objective information in her possession. If the set of priors entertained by the
DM is some 𝐶 ⊂ Σ̂, she chooses 𝑠𝑖 ∈ 𝑆𝑖 if

∀𝑠′
𝑖 ∈ 𝑆𝑖, min

𝜋̂∈𝐶
𝑈𝑖(𝑠𝑖, 𝜃𝑖, ̂𝜋) ≥ min

𝜋̂∈𝐶
𝑈𝑖(𝑠′

𝑖, 𝜃𝑖, ̂𝜋)

In the revealed preferences tradition, the MEU model doesn’t require frequentist decision-
making. As Gilboa et al. (2010) put it, an uncertainty-averse DM can convince others that decisions
made through the Unanimity criterion (Bewley, 2002) are rational, while she cannot be convinced
that she is wrong in making decisions by completing her preferences through the MEU criterion.
Such completion through revealed preferences need not be frequentist in nature. There are, how-
ever, ways to more starkly separate the DM’s attitude toward uncertainty from her perception of,
and information regarding, uncertainty. The approach followed here is to assume information-type
𝜃𝑖 has SEU preferences over “second-order acts,” i.e. expected utility profiles induced by the array
of plausible objective models. This requires him to hold a second-order subjective probabilistic
belief

𝜇𝑖
𝜃𝑖

∈ Δ(Σ̂) ⊆ Δ2 (Θ0 × Θ−𝑖 × 𝑆−𝑖)
over such plausible models.11 Then, negative attitudes toward uncertainty may be described by a
functional which “penalizes” more uncertain beliefs. Some belief 𝜇 is regarded as more uncertain

11As a matter of notation and interpretation, a conjecture of a player 𝑖 may be common or differentiated across
types and strategies chosen. For now, consider a level of generality whereby at least types may hold different
conjectures, because this will be an important general concept for the later equilibrium analysis. That the conjecture
may differ for players playing different strategies is something we informally take for granted here, whereas it will
be stated explicitly when necessary (e.g. for equilibrium definitions).
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(or uncertainty aware) than another 𝜈 if 𝜇 is a mean-preserving spread of 𝜈 (see Section 3).
According to the smooth representation introduced by Klibanoff et al. (2005) [hereon, KMM], an
uncertainty-averse DM evaluates available act (strategy) 𝑠𝑖 ∈ 𝑆𝑖 under the subjective second-order
prior according to criterion

𝑉 𝜑𝑖
𝜃𝑖

(𝑠𝑖, 𝜇𝑖
𝜃𝑖

) = 𝜑−1
𝑖 (∫

supp𝜇𝑖
𝜃𝑖

𝜑𝑖(𝑈𝑖(𝑠𝑖, 𝜃𝑖, ̂𝜋)) 𝜇𝑖
𝜃𝑖

(𝑑 ̂𝜋)) (6)

where 𝜑𝑖 is a continuous, strictly increasing and concave12 real-valued function. One of the signif-
icant advantages of criterion (6) is that it is able to separate a DM’s ambiguity attitudes from her
ambiguity perception. This tractability allows to analyze the two features separately. Attitudes
toward risk and ambiguity are typically regarded as stable personal traits; while perception of un-
certainty may depend on stable personal features as well, it does not seem far-fetched to suppose
it is often affected by contextual factors.

The shape of function 𝜑𝑖 captures the player’s ambiguity attitudes. The support of the second-
order prior 𝜇𝑖

𝜃𝑖
may be interpreted “cognitively” (Wald, 1949; Gilboa and Marinacci, 2013): a

motivation for a smooth ambiguity representation may be the desire to represent the behavior of
a DM who does not exclude any plausible model consistent with objective information from her
decision problem, and nevertheless does not evaluate acts solely based on the worst-case scenario
for each. This is, however, far from necessary for the representation; in fact, supports of beliefs
upholding criterion (6) will be conveniently used to describe varying degrees of uncertainty per-
ception in the game theoretic analysis of Section 3. That is, although objective information might
not rule out some objective statistical model, the DM may unwillingly ignore it. Note that if 𝜇𝑖

𝜃𝑖
is

a Dirac measure on some objective statistical model over the uncertainty space, the DM behaves
as a naïve Bayesian; that is, she de facto entertains a unique first-order prior.

The presence of operator 𝜑−1
𝑖 in (6) constitutes an innocuous normalization that will facilitate

comparison of subjective values with risky but unambiguous alternatives. “Ambiguity neutrality”
corresponds to the case where 𝜑𝑖 is affine: in this case, the player computes a SEU calculation
with respect to the predictive probability of each profile of strategies and information types, given
by

̂𝜇𝑖
𝜃𝑖

(𝜃0, 𝜃−𝑖, 𝑠−𝑖) = ∫
supp𝜇𝑖

𝜃𝑖

̂𝜋(𝜃0, 𝜃−𝑖, 𝑠−𝑖)𝜇𝑖
𝜃𝑖

(d ̂𝜋) (7)

This is no more the case for players who are even moderately averse to ambiguity; this key aspect
will play a pivotal role in the analysis of Section 3. According to the KMM criterion, an agent 𝑖 is
characterized as more ambiguity averse than 𝑗 if there exists a function ℎ such that 𝜑𝑖 = ℎ∘𝜑𝑗, where
ℎ is strictly increasing and concave or, equivalently, when both 𝜑𝑖 and 𝜑𝑗 are twice continuously
differentiable, if 𝜑″

𝑖 /𝜑′
𝑖 ≤ 𝜑″

𝑗 /𝜑′
𝑗. When the ambiguity aversion coefficient −𝜑″

𝑖 /𝜑′
𝑖 converges to

infinity, we obtain the limit case of extreme ambiguity aversion, denoted 𝜔, corresponding to the
Maxmin criterion:

𝑉 𝜔
𝜃𝑖

(𝑠𝑖, 𝜇𝑖
𝜃𝑖

) = min
𝜋̂∈supp𝜇𝑖

𝜃𝑖

𝑈𝑖(𝑠𝑖, 𝜃𝑖, ̂𝜋) (8)

Note that, in this case, the set supp𝜇𝑖
𝜃𝑖

⊆ Σ̂ does not reflect ambiguity attitudes—it only
embodies objective information and its processing on the part of the DM. With this, we are
now equipped to embark on the game-theoretic analysis. The models presented above constitute
fundamental contributions to Decision Theory, as they axiomatize revealed preferences inconsistent
with SEU within Rational Choice Theory. The survey in this Section is far from exhaustive;
its scope is limited to the purpose of understanding uncertainty averse decision making, how it
favors the status quo, and the normative interplay that exists among ambiguity attitudes (personal

12If the DM is uncertainty-loving instead, 𝜑𝑖 is convex.
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tastes), knowledge, and perception. In later sections, only the KMM model will be used; the above
exposition is, however, crucial to interpret correctly the results of Section 3.

In economic problems, usage of uncertainty-averse (or loving) decision criteria may heavily
affect predictions, as they characterize individual incentives differently and, therefore, also equi-
librium sets according to any solution concept that does not assume perfect monitoring. In other
words, departure from the Bayesian paradigm allows to encompass broader choice patterns, which
address in a descriptively consistent while normatively desirable way Knightian uncertainty. This
is especially palatable given that (i) “unmeasurable uncertainty” is pervasive in the evolution of
recurrent anonymous interaction phenomena, e.g., in the stock market, as pointed out by Keynes
(1936), and (ii) Ellsberg’s Paradox, together with the ensuing academic discussion, has shown that
neutrality toward uncertainty may not be necessarily regarded as the most normatively appropriate
attitude.

2.3. Self-confirming equilibrium with ambiguity attitudes

The first definitions for Conjectural or Self-Confirming Equilibrium were put forth by Battigalli
and Guaitoli (1988) and Fudenberg and Levine (1993). Both assumed the SEU decision criterion,
and were suited for the analysis of games in extensive-form. Battigalli and Guaitoli had subsumed
the results of their independent undergraduate theses, and their framework allowed for general
feedback functions. On the other hand, while Fudenberg and Levine’s work more specifically
assumed that players could perfectly observe ex-post the path of play, their analysis would apply
to large population games, justifying the assumption that players exclusively focus on their current-
stage payoff even if they are not impatient.

A general definition of anonymous-interaction Self-Confirming Equilibrium for games with feed-
back and payoff uncertainty, which incorporates the contributions above, and in which all players
are SEU maximizers, can be adapted from Battigalli et al. (2023). In a Self-Confirming Equilibrium,
players respond rationally to confirmed conjectures about the behavior of coplayers. Information
feedback for each player 𝑖 is described by the private feedback function 𝐹𝑖 ∶ Θ × 𝑆 → 𝑀𝑖.13 A
player of type 𝜃𝑖 playing strategy 𝑠𝑖 who holds conjecture 𝜇𝑖

𝑠𝑖,𝜃𝑖
expects to receive each message

𝑚𝑖 with probability

ℙ𝐹𝑖
𝑠𝑖,𝜇𝑖(𝑚𝑖|𝜃𝑖) ∶= ∑

𝜃0,𝜃−𝑖,𝑠−𝑖∶𝐹𝑖(𝜃,𝑠)=𝑚𝑖

𝜇𝑖
𝑠𝑖,𝜃𝑖

(𝜃0, 𝜃−𝑖, 𝑠−𝑖) (9)

whereas, if coplayers are collectively enacting mixed strategy profile 𝜎, random matching and
a standard law of large numbers argument imply that in a steady state the long-run observed
frequency of each message is given by

ℙ𝐹𝑖𝑠𝑖,𝜎−𝑖,𝑞−𝑖(𝑚𝑖|𝜃𝑖) ∶= ∑
𝜃0,𝜃−𝑖,𝑠−𝑖∶𝐹𝑖(𝜃,𝑠)=𝑚𝑖

𝑞0(𝜃0) ∏
𝑗≠𝑖

𝜎𝑗(𝑠𝑗|𝜃𝑗)𝑞𝑗(𝜃𝑗) (10)

To understand the relevance of these formulae, consider a game that has already been repeated
several times, such that a stationary state has been reached. That is, we are in “equilibrium,” which
I shall define explicitly shortly below. A player of type 𝜃𝑖 from population 𝑖 has been playing 𝑠𝑖 for
a long time, and wants to determine whether it is sensible to keep doing so. I implicitly assume that
players exhibit inertia, that is, unless they have a strict incentive to deviate, they do not do so.14

13To ease intuition and exposition, the notation is kept consistent throughout with the strategic-form framework
introduced at the beginning of Section 2. It should be kept in mind, however, that the scope of the definition of
Bayesian Self-Confirming Equilibrium is more general and adapts seamlessly to games in extensive-form.

14This assumption is standard in equilibrium analysis, and the reason should be intuitive: if we assumed the
opposite, players may keep bouncing from one strategy to another. Even though this does not affect their own
payoffs directly, it may dynamically alter coplayers’ incentives, leading to chaotic interaction. Although it is in
principle totally legitimate to conduct such an analysis, this would be formally much more complex, and equilibria
(which would then need to be defined differently) may fail to exist even in relatively simple games.
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Through the long-run objective distribution of messages described by Equation 10, 𝜃𝑖 is able to
partition the uncertainty space (cfr. Equation 1) and infer the relative frequency of (unobservable)
subsets of the uncertainty space, which we also call events. At the same time, 𝜃𝑖 enters a play
of the game holding a conjecture 𝜇𝑖

𝑠𝑖,𝜃𝑖
which describes what he believes of the uncertainty space

and, in turn, of the relative frequency of the messages he can observe. Is the player free to hold
any conjecture? In principle, yes, but a key assumption we make in Self-Confirming Equilibrium
analysis is that players have sufficient cognitive ability not to hold beliefs that are inconsistent
with the stationary distribution of observed messages.

Suppose you are playing Texas Hold ’em against a friend whom you suspect is a cheater (this
would be his information type). In the beginning, you do not have evidence for or against this
hypothesis, so you are free to trust him as you deem fit. This remains the case as long as what you
observe does not definitively imply that he is either cheating or not. However, after a long time,
you notice that he folds 10% of the time, and every single time he does not, he was “lucky” enough
to have drawn Double Aces from the deck. Next time, would it not be foolish not to assume he
has Double Aces in his hand? Assuming the deck is fair, the number of plays does not have to be
very large for you to rule out that the observed message frequency (i.e., the outcome of the games
he keeps winning) is inconsistent with him being of type non-cheater. This naturally leads us to
the definition of (Bayesian) Self-Confirming Equilibrium.

A conjecture is confirmed in the long run if it is not disproven, that is, if the subjective proba-
bility assigned to the event of observing any given message corresponds to its observed frequency.
When a player’s conjecture is confirmed, she has no incentive to deviate to another strategy, if she
is acting optimally already. These facts provide the two conditions for stationarity that uphold
equilibrium.

Definition 2 (SCE). Consider a finite game 𝐺 and a profile of feedback functions 𝐹 = (𝐹𝑖)𝑖∈𝐼. A
profile of mixed strategies and conjectures

(𝜎∗
𝑖 (⋅|𝜃𝑖), (𝜇𝑖

𝑠𝑖,𝜃𝑖
)

𝑠𝑖∈supp𝜎𝑖(⋅|𝜃𝑖)
)

𝑖∈𝐼,𝜃𝑖∈Θ𝑖

∈ ⨉
𝑖∈𝐼

(Δ(𝑆𝑖) × Δ𝑆𝑖(𝑆−𝑖))
Θ𝑖

is an anonymous self-confirming equilibrium (SCE) of the game with feedback (𝐺, 𝐹) if, for
every role 𝑖 ∈ 𝐼, information type 𝜃𝑖 ∈ Θ𝑖 and strategy 𝑠𝑖 ∈ supp𝜎∗

𝑖 , the following conditions hold:

1. (rationality) 𝜎𝑖(𝑠𝑖|𝜃𝑖) > 0 ⇒ ∀ ̃𝑠𝑖 ∈ 𝑆𝑖, 𝑈𝑖 (𝑠𝑖, 𝜃𝑖, 𝜇𝑖
𝑠𝑖,𝜃𝑖

) ≥ 𝑈𝑖 ( ̃𝑠𝑖, 𝜃𝑖, 𝜇𝑖
𝑠𝑖,𝜃𝑖

)

2. (confirmation) ℙ𝐹𝑖
𝑠𝑖,𝜇𝑖(⋅|𝜃𝑖) = ℙ𝐹𝑖

𝑠𝑖,𝜎∗
−𝑖,𝑞−𝑖

(⋅|𝜃𝑖)

This definition allows for fractions of agents in the same population to hold different assessments
depending on their information type and the strategies they are playing. This is important as
the partition of the uncertainty space can differ depending on these parameters. Note that an
equilibrium is identified as a profile of strategies and beliefs—the former alone only make up an
equilibrium (strategy) profile. BCMM discuss the generalization of the SCE solution concept to
non-neutral attitudes toward uncertainty, comparing sets of equilibria underpinned by increasing
degrees of ambiguity aversion, assuming that players are KMM decision-makers. Their definition
is easily generalized to a payoff-uncertain setting. Let 𝜈𝑖 ∶= ℙ𝐹𝑖

𝑠𝑖,𝜎∗
−𝑖,𝑞−𝑖

(⋅|𝜃𝑖) ∈ Δ (𝑀𝑖) denote the
long-run distribution of messages observed by 𝜃𝑖 playing 𝑠𝑖 within equilibrium strategy profile
𝜎∗; then

Σ̂−𝑖,𝜃𝑖
∶= Σ̂−𝑖,𝜃𝑖

(𝑠𝑖, 𝑞−𝑖, 𝜎∗
−𝑖) = { ̂𝜋 ∈ Δ(Θ0 × Θ−𝑖 × 𝑆−𝑖) ∶ ̂𝐹𝑠𝑖,𝜃𝑖

( ̂𝜋) ∶= ̂𝜋 ∘ 𝐹 −1
𝑠𝑖,𝜃𝑖

= 𝜈𝑖} (11)

denotes the partial identification set, that is, the set of all distributions of profiles of strategies
and types deemed possible from 𝜃𝑖’s long-run empiricist perspective. This is the hard information
constraint faced by each DM, which in Section 2.2 we had more informally denoted by Σ̂. Since the
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distributions contained in this set are undistinguishable by construction from 𝜃𝑖’s perspective, they
form the domain of uncertainty of his or her decision problem. This fact motivates a more general
definition of Self-Confirming Equilibrium, which encompasses the possibility of non-Bayesian DMs.
Denote a game with feedback and ambiguity attitudes by (𝐺, 𝜑): this structure differs from (𝐺, 𝐹)
in that we add a profile 𝜑 ∶= (𝜑)𝑖∈𝐼 of ambiguity smoothing functions, in the sense of Equation 6.

Definition 3 (SSCE). A profile of strategy distributions 𝜎∗ = (𝜎∗
𝜃𝑖

)𝜃𝑖∈Θ𝑖,𝑖∈𝐼 is a smooth Self-
Confirming Equilibrium (SSCE) profile of game with feedback and ambiguity attitudes (𝐺, 𝜑) if,
for every 𝑖 ∈ 𝐼, 𝜃𝑖 ∈ Θ𝑖, and 𝑠𝑖 ∈ supp𝜎∗

𝜃𝑖
, there exists 𝜇𝑠𝑖,𝜃𝑖

such that

1. (rationality) ∀ ̃𝑠𝑖 ∈ 𝑆𝑖, 𝑉 𝜑𝑖
𝜃𝑖

(𝑠𝑖, 𝜇𝑠𝑖,𝜃𝑖
) ≥ 𝑉 𝜑𝑖

𝜃𝑖
( ̃𝑠𝑖, 𝜇𝑠𝑖,𝜃𝑖

)

2. (confirmation) supp𝜇𝑠𝑖,𝜃𝑖
⊆ Σ̂−𝑖,𝜃𝑖

For a strategy profile to constitute a SSCE, there must exist a profile of assessments consistent
with long-run feedback (that is the role of Σ̂−𝑖,𝜃𝑖

) such that the subjective value of the game as
evaluated through 𝜑𝑖 by each player is greatest when choosing that strategy. It is important to note
that the existence of the profile of assessments here constitutes a necessary condition for a strategy
profile to constitute an equilibrium, and it is not included as a component itself. In other words,
the equilibrium profile is the equilibrium strategy profile. This feature is formally convenient to
describe the monotonicity results of Section 3. For this reason, in the remainder, when I write
“𝑆𝐶𝐸” to denote an equilibrium set, I will also be referring to equilibrium strategy profiles only,
leaving beliefs in the background.

This definition differs from BCMM in that the partially identified set of distributions Σ̂−𝑖,𝜃𝑖
is

a subset of the larger space Δ (Θ0 × Θ−𝑖 × 𝑆−𝑖). The original analysis does not explicitly discuss
payoff uncertainty.15 BCMM refer to games with chance moves; the latter can be alternatively
modeled as payoff parameters (see Section 3.5). At the same time, separately modeling payoff
uncertainty allows to describe more flexibly the ex ante distribution of information in a game. One
can more naturally interpret information types as private, stable features of individuals.16 BCMM’s
results rely on an important Lemma upheld by the assumption of Observed Payoffs (Definition 1),
extended here to enclose payoff uncertainty. First, note that we can define the objective expected
payoff of playing strategy 𝑠𝑖 for type 𝜃𝑖 when coplayers are behaving according to 𝜎∗

−𝑖 as17

𝑈𝑖(𝑠𝑖, 𝜃𝑖, 𝑞−𝑖, 𝜎∗
−𝑖) ∶= ∑

(𝜃0,𝜃−𝑖,𝑠−𝑖)∈Θ0×Θ−𝑖×𝑆−𝑖

𝑈𝑖 (𝑠𝑖, 𝜃, 𝑠−𝑖) 𝑞0(𝜃0) ∏
𝑗≠𝑖

𝜎∗
𝑗 (𝑠𝑗|𝜃𝑗) 𝑞𝑗(𝜃𝑗) (12)

Lemma 1. If payoffs are observable in game 𝐺, then for every 𝑖 ∈ 𝐼, 𝜃𝑖 ∈ Θ𝑖, 𝑠𝑖 ∈ 𝑆𝑖 and
𝜎∗

−𝑖 ∈ Δ(𝑆−𝑖),

∀ ̂𝜋 ∈ Σ̂−𝑖,𝜃𝑖
(𝑠𝑖, 𝑞−𝑖, 𝜎∗

−𝑖) , 𝑈𝑖(𝑠𝑖, 𝜃𝑖, ̂𝜋) = 𝑈𝑖(𝑠𝑖, 𝜃𝑖, 𝑞−𝑖, 𝜎∗
−𝑖)

15If the game has no payoff uncertainty, it does not necessarily feature complete information, which would instead
correspond to the informal assumption of the occurrence of event

⋂
𝑛∈ℕ0

(everybody knows that)𝑛 everybody knows all the rules of the game.

16Modeling the distribution of information through chance moves would also introduce significant technical com-
plications for SCE analysis. A game representation equivalent to the one above, if carried out through alternative
paths of play induced by realizations of chance moves, would hinder clarity and require a fastidious description of
what players can observe regarding those chance moves.

17Computation of expected payoff according to Equations 4 and 5 requires one-step integration as subjective
models 𝜋̂ are joint distributions of strategies and types. These models can be decomposed to obtain marginal beliefs
on types, and conditional beliefs on strategies depending on types. Hence the notation abuse in Equation 12, where
𝑈𝑖 takes in an extra argument, is moot.
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In words, the objective expected payoff of playing strategy 𝑠𝑖 is constant across all distributions
in the partially identified set. This is quite natural for stationary distributions as, under payoff
observability, a DM shall be able to rule out distributions inducing expected payoffs different from
the long-run time average observed when playing 𝑠𝑖. BCMM’s main result relies on this fact: as
long as beliefs are consistent with evidence, their support and shape do not influence the value of
the strategy being played—whereas they indeed (potentially) affect the value of untested strategies.
The analysis in Section 3 also hinges on this important observation.

As a limit case of KMM, aversion to uncertainty takes the maxmin form of Gilboa and Schmei-
dler (1989)—although recall from the discussion in Section 2.2 that the set of priors is not to be
interpreted in the same way. The following definition is provided separately, because the Maxmin
criterion may admit a strictly frequentist interpretation, intended here, where revealed preferences
are not the result of a set of priors:

Definition 4 (MSCE). A profile of strategy distributions 𝜎∗ = (𝜎∗
𝜃𝑖

)𝜃𝑖∈Θ𝑖,𝑖∈𝐼 is a maxmin self-
confirming equilibrium (MSCE) profile of a game with feedback (𝐺, 𝐹) if, for every 𝑖 ∈ 𝐼, 𝜃𝑖 ∈ Θ𝑖
and 𝑠∗

𝑖 ∈ supp𝜎∗
𝑖 ,

min
𝜋̂∈∑̂−𝑖,𝜃𝑖

(𝑠∗
𝑖,𝑞−𝑖,𝜎∗

−𝑖)
𝑈𝑖(𝑠∗

𝑖 , 𝜃𝑖, ̂𝜋) ≥ min
𝜋̂∈∑̂−𝑖,𝜃𝑖

(𝑠∗
𝑖,𝑞−𝑖,𝜎∗

−𝑖)
𝑈𝑖(𝑠𝑖, 𝜃𝑖, ̂𝜋) ∀𝑠𝑖 ∈ 𝑆𝑖 (13)

BCMM establish the following important monotonicity result: if a game with ambiguity atti-
tudes is more ambiguity averse than another, in the sense that they share the same underlying
structure but every player is weakly more ambiguity averse than the former, the set of smooth
equilibria weakly expands. This surely implies that, in general, the set of SSCE is a weak superset
of the set of SCE determined by SEU-maximizing players (Definition 2).

Recall that, in the long-run, the value of tested strategies is known objectively, whereas that of
untested ones remains ambiguous. BCMM state that “keeping beliefs fixed, [the latter] is higher
when ambiguity aversion is lower”: the more a player is ambiguity averse, the more he exhibits
status quo bias. As will be shown, a related complementary result holds. Keeping ambiguity
aversion fixed, the value of untested strategies is in general lower the more uncertain the belief
(the more the DM perceives ambiguity, or is troubled by the imprecision in the information she is
presented with).

The definition of SSCE assigns an instrumental role to beliefs. The underlying motivation is
that, in principle, one may entertain any belief; thus, it is best to consider all of them. Section 2.2
clarifies how, absent additional assumptions, a prior whose support is a strict subset of Σ̂−𝑖,𝜃𝑖
characterizes personal taste and characteristics in the processing of objective information, given
the context. It is thus a stretch to assume that players may not be characterized in terms of their
perception, and that we cannot compare agents who differ in this respect. It is sensible to discuss
how non-Bayesian DMs may interact differently depending on their naïveté, as embodied by the
width of the support of their second-order prior, for a fixed degree of ambiguity aversion. Thus in
Section 3 an ancillary framework is developed to apply the SSCE solution concept to “doubtful”
thinking. That is, I will consider how alternative beliefs entailing varying degrees of ambiguity
perception impact steady states. The implications will highlight the effect that doubts early in the
game may have on equilibrium.

2.4. A note on payoff observability

In the definitions of SSCE and MSCE, the subjective value optimization under some profile of
conjectures is sufficient to ascertain that the candidate strategy profile is indeed an equilibrium,
due to Lemma 1. Since any statistical model in the support of a conjecture shall yield the same
subjective value as the conjecture that corresponds to the true distribution of strategies and types,
it does not matter which conjecture is actually held within the set Σ̂−𝑖,𝜃𝑖

for determining the
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subjective value of the strategy that is currently being played. As pointed out by BCMM, however,
the set

{𝑈𝑖( ̃𝑠𝑖, 𝜃𝑖, ̂𝜋) ∶ ̂𝜋 ∈ Σ̂−𝑖,𝜃𝑖
(𝑠∗

𝑖 , 𝑞−𝑖, (𝜎∗
𝜃𝑘

)𝜃𝑘∈Θ𝑘,𝑘≠𝑖)}
for a generic strategy ̃𝑠𝑖 distinct from 𝑠∗

𝑖 is in general not a singleton. This is because partitions
of the uncertainty space induced by alternative pure strategies need not correspond for any given
type—and this is what drives action in favor of the status quo.

Let 𝜎̂ be some Bayes-Nash strategy profile of the game. If payoffs are not observable, even in the
long-run it is not granted that 𝜃𝑖 will learn the expected payoff associated with any 𝑠𝑖 ∈ supp𝜎̂𝜃𝑖

.
This implies that the role of uncertainty becomes all the more relevant in determining decision-
makers’ course of action, as the appeal of less ambiguous strategies inherently grows. In this case,
the monotonicity result of BCMM does not hold.

For instance, consider the case of constant (no) feedback: Σ̂−𝑖,𝜃𝑖
necessarily corresponds to the

entire uncertainty space. Even though players know their payoff function, they cannot observe
their realizations so that, as more distributions become consistent with the evidence (the partition
induced by feedback becomes coarser), more paranoid, uncertainty-averse DMs may envision a
larger set of possibilities. More conservative courses of actions may then offer higher minimal
expected payoff than all 𝑠𝑖 ∈ supp𝜎̂𝜃𝑖

also if coplayers were playing according to 𝜎̂−𝑖, because the
expected payoff induced by 𝜎̂−𝑖 can never be observed. This is indeed the case of Example 1 below:
without feedback, an extremely uncertainty averse DM will never enter the 𝑀𝑃 subgame. While it
is desirable to keep this in mind, in what follows the assumption of Payoff Observability is always
maintained.

3. comparative ambiguity perception

In this section I extend the SCE analysis under uncertainty aversion to consider restrictions on ex-
ogenous beliefs, more precisely on profiles of second-order priors. Section 3.1 introduces an ancillary
game structure to deal with such restrictions, and shows that priors predicting the same distribu-
tion on average may induce nested sets of equilibria if they entail varying degrees of (perceived)
ambiguity. Section 3.2 illustrates this reasoning through an example, whereby the threshold of am-
biguity attitude needed to justify more conservative courses of action depends on the spread of the
prior. The example considers finite support measures for instructive purposes, but it is important
to note that the result has a more general scope and, in some games, even very small probabilities
assigned to more extreme events by priors with infinite support may affect the decision-making
outcome. This important theoretical point is stated and discussed in Section 3.3. The implications
of another relevant assumption on feedback, namely “own-strategy independence of feedback”, are
explored in Section 3.4. The last subsection instead considers how payoff uncertainty affects the
formal description of the game.

3.1. Stochastic dominance of beliefs and equilibrium

Definition 5. Consider a game with feedback and ambiguity attitudes (𝐺, 𝜑). Denote by (𝐺, 𝜑, 𝜇)
the 𝜇-restriction of the game, that is, the same game with the additional restriction on exogenous
beliefs whereby the belief profile must be described by 𝜇. Denote by (𝐺, 𝜑, 𝐶) the 𝐶-restriction of
the game, where 𝐶 ∶= ⨉𝑖∈𝐼 𝐶𝑖 and 𝐶𝑖 is the collection of beliefs that player 𝑖 ∈ 𝐼 is allowed to
hold in the restricted game.

Definition 5 yields an ancillary class of games identified by prior profiles.18 Clearly, a strategy
profile 𝜎∗ can be a SSCE of (𝐺, 𝜑, ̃𝜇) if and only if it is a SSCE of (𝐺, 𝜑) such that for every 𝑖, 𝜃𝑖

18The equilibrium set of a game restricted in this way may be empty even if mixed equilibria exist, because
exogenously posed priors may be inconsistent with any Nash strategy profile.
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and 𝑠∗
𝑖 ∈ supp𝜎∗

𝑖 , we have supp ̃𝜇𝑖 ⊆ Σ̂−𝑖,𝜃𝑖
and

𝑉 𝜑𝑖
𝜃𝑖

(𝑠∗
𝑖 , ̃𝜇𝜃𝑖,𝑠∗

𝑖
) ≥ 𝑉 𝜑𝑖

𝜃𝑖
(𝑠𝑖, ̃𝜇𝜃𝑖,𝑠∗

𝑖
) ∀𝑠𝑖 ∈ 𝑆𝑖

Thus more broadly, 𝜎∗ is a SSCE of (𝐺, 𝜑, 𝐶) if and only if it is a SSCE of (𝐺, 𝜑) where the
confirmation condition on the profile of beliefs 𝜇 of Definition 3 (supp𝜇𝑖

𝑠𝑖,𝜃𝑖
⊆ Σ̂−𝑖,𝜃𝑖

) is replaced
with the stronger condition

𝜇𝑖
𝑠𝑖,𝜃𝑖

∈ 𝐶𝑖 ∩ Δ(Σ̂−𝑖,𝜃𝑖
)

This definition allows us to analyze how the equilibrium set may change depending on the
prior belief profile held by players. To this end, the following result equips us with a comparative
notion on priors that relies on stochastic dominance. The proof relies on the foundational work of
Rothschild and Stiglitz (1970), and allows the derivation of Proposition 1 below.

Lemma 2. If payoffs are observable, second-order prior 𝜇𝑖 ∈ Δ(Σ̂−𝑖,𝜃𝑖
) is a (weak) mean-preserving

spread of 𝜈𝑖 ∈ Δ(Σ̂−𝑖,𝜃𝑖
) if and only if 𝜇𝑖 (weakly) second-order stochastically dominates 𝜈𝑖.

Probability distribution 𝜇𝑖 is said to be a mean-preserving spread of 𝜈𝑖 if, formally,19 𝜇𝑖 𝐷= 𝜈𝑖 +𝑧
where 𝑧 is random noise with null conditional expectation. In simpler terms, a mean-preserving
spread of some distribution is another distribution with the same expected value which, however,
assigns more weight to the tails of the original distribution. Note that mean-preserving spreads
only make up a partial (incomplete) order. It can be shown that if 𝜇𝑖 is a mean-preserving spread
of 𝜈𝑖, then it has higher variance and identical expected value; the converse is not true in general,
which can be seen by simply observing that variance induces a complete ordering. A special case
of MPS obtains when the predictive probabilities of two beliefs coincide and the convex hulls of
their supports are nested in each other.

Lemma 3. If 𝜇𝑖, 𝜈𝑖 ∈ Δ(Σ̂−𝑖,𝜃𝑖
) induce the same predictive probability, and conv supp𝜈𝑖 ⊂

conv supp𝜇𝑖, then 𝜇𝑖 is a mean-preserving spread (MPS) of 𝜈𝑖.

The notion of MPS has long been studied in the literature of choice under risk, motivated by
the objective of defining what makes some lottery “riskier” than another. In this setting, we are
dealing with beliefs rather than lotteries; thus an MPS of some belief shall be interpreted as the
belief in the same average outcome which is, at the same time, more concerned with more uncertain
outcomes.

Consistently with the interpretation in choice under risk, then, one may say that a belief is a
MPS of another if it is “more uncertain”, or it perceives more (Knightian) uncertainty. Indeed,
KMM had already noted that ambiguity aversion is “an aversion to the subjective uncertainty
about ex ante evaluations. Analogous to risk aversion, aversion to this uncertainty is taken to
be the same as disliking a mean preserving spread” in the distribution of expected utility values
induced by a belief and a strategy. They also state that a “useful comparative statics exercise is to
hold ambiguity attitudes fixed and ask how the equilibrium is affected if the perceived ambiguity is
varied”, an exercise which we conduct through the following important result, which complements
the analysis of BCMM:

Proposition 1. Let (𝐺, 𝜑) be a finite game with feedback and ambiguity attitudes, which satisfies
Observed Payoffs (Def. 1) and in which all players are weakly ambiguity averse. If 𝜇 and 𝜈 are
profiles of beliefs, and for each 𝑖, 𝜃𝑖 and 𝑠𝑖, 𝜇𝑖

𝑠𝑖,𝜃𝑖
is a (weak) MPS of 𝜈𝑖

𝑠𝑖,𝜃𝑖
, with supp𝜇𝑖

𝑠𝑖,𝜃𝑖
⊆

Σ̂−𝑖,𝜃𝑖
(𝑠𝑖, 𝑞−𝑖, 𝜎∗

−𝑖) for every 𝜎∗ ∈ 𝑆𝑆𝐶𝐸(𝐺, 𝜑, 𝜈), then

𝑆𝑆𝐶𝐸(𝐺, 𝜑, 𝜈) ⊆ 𝑆𝑆𝐶𝐸(𝐺, 𝜑, 𝜇)
19Symbol 𝐷= means “is identical in distribution”.
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Proposition 1 establishes that greater ambiguity aversion need not be the unique determinant
of “certainty traps” within the same game form. In fact, it is also possible that players who are
equally averse to ambiguity are not all equally aware of the range of models compatible with
the evidence, or they disregard some possibilities. To see this point more clearly, recall that the
definition of SSCE admits beliefs whose support is strictly contained in Σ̂−𝑖,𝜃𝑖

. Status quo biases,
therefore, do not necessarily follow from a more ambiguity averse attitude; they may result from
strong ambiguity perception.

How shall stochastic dominance be interpreted? It is wrong to conclude that an ambiguity averse
decision-maker “prefers” holding beliefs that entail smaller uncertainty. It is behavior that elicits
the representation, not the converse. In other words, the second-order prior held by a decision-
maker in an interactive situation is symptomatic of the extent to which she would consider all
available possibilities before making a choice. The stochastic dominance argument simply embodies
the idea that the status quo bias is stronger for agents who are bewildered by the presence of
uncertainty, irrespective of how averse to it they may be.

We are led to a startling paradox: provided that players slightly dislike uncertainty, outright
ignoring it shall grant objectively better payoffs. Conversely, for any given prediction regarding
the average outcome, frantically evaluating all possibilities, including the most extreme ones, in-
creases the likelihood of certainty traps, even if relatively little weight is assigned to such extreme
possibilities. The derivation of Proposition 1 allows a straight-forward corollary whereby wider
ambiguity perception restricts the reachable equilibrium set for ambiguity-loving players.

The assumption of mean preservation means we require that players hold the same prediction
regarding the behavior and types of others, while the spread implies that in one case they believe
a wider range of outcomes to be possible. This affects their confidence in the prediction, so that
the same average prediction may act as basis for action in different ways. Note that so far I
have disregarded cases where the predicted outcome is different; this point will be addressed in
Section 3.3. The KMM criterion is rather helpful in the derivation of Proposition 1, because it
allows to deal with probabilities. Analogous reasoning would result, however, if we were to represent
the DM’s behavior e.g. through the CEU model (Schmeidler, 1986). Instead of comparing mean-
preserving spreads, one may start from a capacity, and reduce the weight assigned to less uncertain
objective distributions, i.e. those leading to expected utility values closer to the mean.

Proposition 1 complements the formulation and analysis conducted in BCMM of the status
quo bias induced by aversion to uncertainty: when information is insufficient, for ambiguity averse
players, the more contemplated possibilities the more equilibria are possible. Restricting the prior
beliefs of players confines the comparison to beliefs that can be partially ordered. However, it
enables a first evaluation of the consequences of players second-guessing themselves. When many
priors are possible, an agent enters the game with a belief determined by her taste, objective
information, and how the latter is processed, and acts accordingly. The evidence she accumulates
thereafter depends on previous plays. Ex-ante more paranoid DMs, those who incur a certainty
crisis, stop learning and get stuck more easily.20 This is shown in the example of Section 3.2.

3.2. An illustration

Example 1. Consider the Matching Pennies game with an Outside option whose “tree” is depicted
in Figure 1. Assume 𝜀 ∈ (0, 1

2 ). The game is a simplification of the running example in BCMM.
In this game without payoff uncertainty, player A repeatedly decides whether to leave the game

(𝑂) or enter and play matching pennies (𝑀𝑃 ) against Nature, which selects actions ℎ, 𝑡 according
to a deterministic probability law 𝜎0 ∈ Δ ({ℎ, 𝑡}). Assume 𝐹A = 𝑈A, that is, A’s feedback
coincides with her payoff function. If A plays H or T, in the long-run she learns her expected
payoff and, given the game structure, also the exact distribution 𝜎0. However, if her initial belief is
compatible with choosing strategy 𝑂, she may not learn anything and get stuck in the objectively

20For a rigorous argument on learning dynamics, see Battigalli et al., 2019b.
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Figure 1: Matching Pennies with Outside Option

𝑂 𝐼𝑛

A

(1 + 𝜀, 𝜂) 𝑀𝑃 ℎ 𝑡
H 3 0
T 0 3

worse outcome. As in BCMM, this can never be the case for a SEU-maximizing player since for
any conjecture 𝜇 the subgame MP would necessarily have value

max {3𝜇, 3 (1 − 𝜇)} ≥ 1.5 > 1 + 𝜀

Now consider A’s decision-making for different priors. Let 𝜑A = 𝑈1/𝛼, 𝛼 > 0. For 𝛼 ∈ (0, 1),
A would be ambiguity loving; for 𝛼 = 1, she’d be ambiguity neutral; otherwise, she is ambiguity
averse. In general, the higher the value of 𝛼, the more 𝜑A is ambiguity averse.21 Also let

𝜇A,1 ∶= 𝛿 1
2 𝛿ℎ+ 1

2 𝛿𝑡

𝜇A,2 ∶= 1
4𝛿ℎ + 1

2𝛿 1
2 𝛿ℎ+ 1

2 𝛿𝑡
+ 1

4𝛿𝑡

𝜇A,3 ∶= 1
2𝛿ℎ + 1

2𝛿𝑡

In words, if A believes 𝜇A,1, she is certain that half the times Nature chooses ℎ, and the other half it
chooses 𝑡. If she believes 𝜇A,2, she additionally deems it fairly plausible that either it always chooses
ℎ or always chooses 𝑡. If she believes 𝜇A,3, she only believes these latter possibilities, and she assigns
equal probability to them. Strategy 𝑂 is a best-reply only if max {𝑉 (𝐻, 𝜇A), 𝑉 (𝑇 , 𝜇A)} ≤ 1. Note
that, by construction,

̂𝜇A,1 = ̂𝜇A,2 = ̂𝜇A,3 = 𝜇A,1

where ̂𝜇 is the predictive probability in the sense of Equation 7. Hence the expected utility profile
for an ambiguity neutral agent would be the same for all three measures: on average, she expects
the same behavior of Nature. For 𝜇A,1, we have that

𝑉 𝜑
A (𝑠A, 𝜇A,1) = 𝑈A (𝑠A, 𝜇A,1) ∀𝑠A ∈ 𝑆A

so that ambiguity attitudes have no bite and 𝑂 can never be justified as a best-reply, because a
prior with singleton-support believes no uncertainty is involved in the choice. On the other hand,
observe that

𝑉 𝜑
A (H, 𝜇A,2) = 𝑉 𝜑

A (T, 𝜇A,2) = (1
431/𝛼 + 1

21.51/𝛼)
𝛼

≤ 1 ⟺ 𝛼 ≥ 2.3 > log2(3)

21Note that this shape for 𝜑A entails a nonconstant degree of ambiguity aversion; see KMM for details.
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and

𝑉 𝜑
A (H, 𝜇A,3) = 𝑉 𝜑

A (T, 𝜇A,3) = (1
231/𝛼 + 1

201/𝛼)
𝛼

≤ 1 ⟺ 𝛼 ≥ log2(3)

By comparing 𝜇A,1 with the other beliefs, we can observe that while the expected utility profile
as expressed by the predictive probability is unchanged (and equal to 𝔼𝜇A,1

[𝑈(𝐼𝑛)] = 1.5), for
a sufficiently ambiguity averse player A these beliefs, which are mean-preserving spreads of the
former, increase the likelihood of choosing the outside option. By comparing 𝜇A,2 with 𝜇A,3, we
note that the latter reduces the support of the prior in terms of cardinality, but it does so while still
increasing uncertainty in the payoff, because it assigns zero probability to the certain (in the sense
of an objective lottery) outcome. Indeed, a moderately uncertainty averse A with 𝛼 ∈ (log2(3), 2.3)
may select 𝑂 as a best reply if she held belief 𝜇A,3, while she would not if she held 𝜇A,2. ◁

Note that all beliefs considered in the example are compatible with evidence observed by playing
𝑂. If A considers a wider range of possibilities, as long as she is sufficiently uncertainty averse she
will avoid exploring even if she expects the same outcome on average. A greater perception of the
threat presented by ambiguity makes the decision-maker more likely to get stuck into a suboptimal
decision. In the example, it is especially interesting to confront beliefs whose supports are such
that one is a superset of the other, as was the case for 𝜇A,1 and 𝜇A,2. Such a case can be more
naturally interpreted as increased awareness of more remote possibilities on the part of the DM,
rather than a belief envisioning exclusively different scenarios that just so happens to preserve the
mean prediction.

It is also important to note that the objective value of the game given available information
has not decreased, and that uncertainty aversion is present in the model in the same degree; it
just is possible for it not to show and stay hidden as long as assessments are naïve enough, i.e.
they are relatively unaware of the uncertainty involved in the choice. On the other hand, one
can verify that the status of some strategy profiles as equilibria may not be affected by ambiguity
perception. Without loss of generality, let 𝜎0(ℎ) > 1/2 in the example and consider strategy 𝐼𝑛.H;
by playing the latter, A learns 𝜎0(ℎ) with certainty, and no ambiguity is present in her decision
problem anymore, so that she may not hold conjectures that entail varying degrees of uncertainty.

The example clarifies that, if players revise their prior beliefs in a way that does not alter
predictions but is more aware of the underlying uncertainty, it may be easier to justify strategies
and reach SSCE profiles which would otherwise be avoided. It highlights how the possibility of
doubting own beliefs may bring about less ambiguous, though possibly suboptimal, equilibria.

3.3. Generalization to sets of beliefs

It is possible to derive a result on equilibrium inclusion which imposes weaker restrictions on ex-
ogenous beliefs, that is, where we compare nonsingleton sets of prior beliefs connected through
second-order stochastic dominance. This is desirable as the assumptions of Proposition 1 might
appear somewhat stringent. Recall that stochastic dominance only induces a partial order; there-
fore, we cannot compare beliefs which are not in such relation with each other. However, we may
leverage pairwise relations among beliefs that belong to different sets.

Recall that for any subjective belief 𝜇𝑖 with nonsingleton support, we may find the associated
predictive probability ̂𝜇𝑖 through Equation 7. If we simply compare nested sets of beliefs, it is
relatively trivial to conclude that the induced sets of justifiable strategies shall enlarge irrespectively
of ambiguity attitudes. Thus we want to compare beliefs that can be put into the MPS relation
with each other, i.e. vary in their perceived uncertainty, without imposing or forbidding other
features of beliefs. In this respect, the convexity of Σ̂−𝑖,𝜃𝑖

is relevant to determine whether we
can find in general a valid (in the sense of compatible with evidence) belief with support convex
hull different from 𝜇𝑖 that yields the same predictive probability ̂𝜇𝑖, so that moving from a set to
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another we are only adding beliefs that are second-order stochastically dominated by the rest. The
potential non-convexity of Σ̂−𝑖,𝜃𝑖

is represented by the dashed square in Figure 2. Again following
BCMM, we may grant convexity by assuming (informally) that players are totally ignorant about
the matching process; that is, no one is aware that other players are randomly drawn independently
of each other. This assumption is unimportant for the case of two-person games, as is the case for
the game in Section 4.

Figure 2: An intuitive graphical representation of the partial identification set and supports of
beliefs which belong to 𝑅𝜀 and 𝑅𝛾

𝜀 . 𝑚𝑘 with 𝑘 = 1, 2, 3 denote predictive probabilities.

ε/2 γ/2

ε

The maximal degree of generality can be obtained by considering sets of beliefs where perceived
uncertainty is varied wherever possible. In other words, we compare sets where we replace any belief
that admits an MPS compatible with objective information with that MPS, and leave unchanged
beliefs that do not allow so. This procedure avoids outright excluding some plausible expectations
on the game play: note that the strategy profiles in 𝑆𝐶𝐸 (𝐺, 𝐹) coincide with the set of 𝑆𝑆𝐶𝐸 given
by all singleton-support beliefs. Consider a belief with singleton support lying on the boundary
of Σ̂−𝑖,𝜃𝑖

(𝑠𝑖, 𝑞−𝑖, 𝜎∗
−𝑖) for some 𝜎∗, 𝑠𝑖 ∈ supp𝜎∗

𝑖 : there is no possibility to construct a MPS whose
support lies within Σ̂−𝑖,𝜃𝑖

, as the spread would necessarily involve including models from outside
the set.

While dealing with infinite-support beliefs can be demanding, we may rely on Lemma 3, con-
sidering the support on the space of objective expected utility values induced by statistical models
in Δ (Θ0 × Θ−𝑖 × 𝑆−𝑖). Endow this space with the following topological structure: let objective
models be subjectively related by the maximal 𝐿1-distance on the space of expected utility values,
which is a subset of the real line:

∀𝑝, 𝑟 ∈ Δ(Θ0 × Θ−𝑖 × 𝑆−𝑖), 𝑑𝜃𝑖
(𝑝, 𝑟) = sup

𝑠𝑖∈𝑆𝑖

∣∫ 𝑈𝑖(𝑠𝑖, 𝜃𝑖, ⋅) d𝑝 − ∫ 𝑈𝑖(𝑠𝑖, 𝜃𝑖, ⋅) d𝑟∣

Then, given 𝜀 ∈ ℝ+, we can define a set 𝑅𝜀 as the smallest closed set of beliefs whose supports are
composed of objective models with maximum pair-wise distance (diameter) 𝜀.

𝑅𝜀 ∶= ⨉
𝑖∈𝐼

{𝜇𝑖 ∈ Δ2 (Θ0 × Θ−𝑖 × 𝑆−𝑖) ∶ ∀𝜃𝑖, ∀𝑝, 𝑟 ∈ supp𝜇𝑖
𝜃𝑖

, 𝑑𝜃𝑖
(𝑝, 𝑟) ≤ 𝜀}

The reader can verify that set 𝑅𝜀 is closed even when the partial identification sets are non-
convex, because they are nonetheless compact-valued (BCMM). By increasing 𝜀, we add profiles of
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beliefs with larger support convex hulls and which are necessarily MPSs of beliefs that are already
present, provided that Σ̂−𝑖,𝜃𝑖

is always convex. As an auxiliary tool, let 𝑅∗
𝜀 ⊆ 𝑅𝜀 denote the

subset whose beliefs already span the maximal convex hull compatible with objective information
for every equilibrium. That is, 𝑅∗

𝜀 includes each belief profile 𝜈 in 𝑅𝜀 such that no equilibrium 𝜎̂
exists under 𝜈 which would allow, for at least one 𝑖, 𝜃𝑖 and 𝑠𝑖 ∈ supp𝜎̂𝑖, constructing an MPS by
strictly enlarging to a width larger than 𝜀 the convex hull of 𝜈𝑖

𝑠𝑖,𝜃𝑖
within the information constraint

Σ̂−𝑖,𝜃𝑖
(𝑠𝑖, 𝑞−𝑖, 𝜎∗

−𝑖) consistent with equilibrium:
Note that this set is independent of specific values of 𝛾 when Σ̂−𝑖,𝜃𝑖

is convex. Finally, for any
𝛾 ≥ 0 let 𝑅𝛾

𝜀 ∶= (𝑅𝜀+𝛾\𝑅𝜀) ∪ 𝑅∗
𝜀. This last set serves the objective described above of varying

perceived uncertainty wherever possible, without restricting the range of predictions an agent may
hold. We can now state the main result of the paper: the stochastic dominance relation leads to
weakly larger equilibrium sets when perceived uncertainty grows.22

Theorem 1. Let (𝐺, 𝜑) be a finite game with feedback and ambiguity attitudes, which satisfies
Observed Payoffs and in which all players are ignorant about the matching process and weakly
averse to ambiguity. Then,

∀𝜀, 𝛾 ∈ ℝ+, 𝑆𝑆𝐶𝐸 (𝐺, 𝜑, 𝑅𝜀) ⊆ 𝑆𝑆𝐶𝐸 (𝐺, 𝜑, 𝑅𝛾
𝜀 ) ⊆ 𝑆𝑆𝐶𝐸 (𝐺, 𝜑)

3.4. Own-strategy independence of feedback

An important, nontrivial assumption often considered when studying self-confirming equilibria is
that of Own-Strategy Independence (cfr. Section 2.1 for notation):

Definition 6. Feedback function 𝐹𝑖 satisfies Own-Strategy Independence of Feedback about others
(OSI) if, for every 𝜃𝑖,23

∀𝑠′
𝑖, 𝑠″

𝑖 ∈ 𝑆𝑖, ℱ𝑠′
𝑖,𝜃𝑖

= ℱ𝑠″
𝑖 ,𝜃𝑖

(14)

Game with feedback (𝐺, 𝐹) satisfies Own-Strategy Independence if condition (14) holds for each
player 𝑖 ∈ 𝐼.

In words, 𝑖’s feedback function satisfies this property if the partition of the uncertainty space
it induces is independent of which strategy 𝑖 actually chooses, for every type of player in that
population. The learning patterns do not differ depending on one’s own strategy, for one’s given
own type. In other words, changing from one strategy to another in between plays of the game
reveals nothing more and nothing less about the behavior and types of coplayers. If payoffs are not
observable, this property raises the incentives for ambiguity averse players to choose ex-ante less
ambiguous options. It is natural to ask, then, what happens when it is combined with Observed
Payoffs.

Lemma 4. If (𝐺, 𝜑) satisfies Definitions 1 and 6, then for every 𝜀 ∈ ℝ+,

𝐵𝑁𝐸 = 𝑆𝐶𝐸 = 𝑆𝑆𝐶𝐸(𝐺, 𝜑, 𝑅𝜀) = 𝑀𝑆𝐶𝐸

where 𝐵𝑁𝐸 denotes the set of Bayes-Nash Equilibria.

As in BCMM, if OSI holds together with Observed Payoffs, in the long-run every player learns
the expected payoff profile associated with every strategy, not only the one they have been playing.
That is, set

{𝑈𝑖( ̃𝑠𝑖, 𝜃𝑖, ̂𝜋) ∶ ̂𝜋 ∈ Σ̂−𝑖,𝜃𝑖
(𝑠∗

𝑖 , 𝑞−𝑖, (𝜎∗
𝜃𝑘

)𝜃𝑘∈Θ𝑘,𝑘≠𝑖)}
22One can easily show that Theorem 1 holds with equality if players are not averse to ambiguity.
23A less stringent formulation requires condition 14 to hold only for non-dominated strategies of each type 𝜃𝑖 in

each role 𝑖, since rational players never pick dominated strategies irrespective of their beliefs and information.
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is a singleton for every ̃𝑠𝑖, because all strategies induce the same partition of the uncertainty space.
As a result, the role of prior beliefs becomes immaterial. The set of (S)SCE collapses to that of
BNE. The following example shows this point, i.e. that there are no implications to alternative
prior specifications in this class of games.

Example 2. Figure 3 represents the strategic form of a game with feedback and ambiguity atti-
tudes. Consider only pure strategy profiles for simplicity. The unique pure BNE is (M, ℓ). Let
again 𝐹𝑖 = 𝑈𝑖; the game thus satisfies both Observed Payoffs and OSI, as can be checked by the
payoff structure. Given that Colin’s feedback is perfect and independent of his strategy, 𝜇𝑐 = 𝛿𝑠R
is necessary: no uncertainty is involved for him. Whenever Colin (𝑐) is playing ℓ or 𝑚, Rowena
(R) may be uncertain of which; any belief encompassing such strategies yields the same (feedback
and) payoff for M, that is 3. Irrespectively of her beliefs, however, she knows that as long as 𝑐
plays ℓ or 𝑚, her expected payoff profile is constant for every action she may play. In other words,
whatever strategy she decides to play in the long-run, the expected payoff of alternative strategies
involves no more uncertainty. Thus the support of her belief cannot induce any status quo in favor
of any strategy that has been played for a long time. ◁

Figure 3: A game where stochastic dominance of priors does not matter.

R
𝑐 ℓ 𝑚 𝑟

U 2, 0 2, 1 1, 0
M 3, 1 3, 0 0, 1
D 0, −1 0, −1 −1, 2

3.5. The role of payoff uncertainty

In the examples made so far, payoff uncertainty has not been given a pivotal role, mostly for ease
of exposition. In general, however, adding uncertain parameters plays an important role in SCE
analysis. For any given feedback structure, the fewer elements known by the players, the more
distributions are consistent with the evidence. Thus, uncertainty cannot but grow (though possibly
weakly). As the discussion shall have made clear by now, this inherently reinforces the status quo
bias implied by ambiguity aversion when players are sufficiently aware of it. This is shown in the
following example.

Example 3. In the game of Figure 4, let 𝐹𝑖 = 𝑈𝑖 for 𝑖 = 1, 2, and 𝜃 = 0.1. Suppose first that
𝜃 is private knowledge in possession of player 2. The game then satisfies Observed Payoffs and
Own-Strategy Independence, thus has a unique smooth SCE, corresponding to the unique pure
Bayesian Equilibrium, (𝑇 , ℓ). It is not possible to sustain (𝐵, 𝑟) as a SCE since Player 2 will always
want to deviate, knowing he can gain for certain.

Figure 4: A simple game with payoff uncertainty.

1
2 ℓ 𝑟

𝑇 1, −1 −1, −2
𝐵 −1, 𝜃 0, 0

Suppose now instead that 𝜃 is private knowledge possessed by player 1, and player 2 is only told
(reliably) that 𝜃 ∈ [−0.5, 1]. The game does not satisfy Own-Strategy Independence anymore. With
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a uniform conjecture over all available hypotheses, expected utility is 0.25, but if 𝜑2(𝑢) = − 1
𝛼 𝑒−𝛼𝑢

with 𝛼 > 3.1, it can be verified that the private value of the deviation to Player 2 is negative. Hence
(𝐵, 𝑟) is a SSCE of this game, given this ambiguity attitude. Interestingly, note that the status
quo bias here ends up favoring Player 2, since this equilibrium is subjectively better than (𝑇 , ℓ),
and profile (𝐵, ℓ) cannot be sustained. Sometimes, certainty traps may turn out to be beneficial
to some parties involved. ◁

Many games of interest with no payoff uncertainty can be put into a formal equivalence with
games with payoff uncertainty, so the latter does not always add significant insights into the
analysis. The literature of choice under uncertainty has often drawn connections with games played
against a malevolent nature. Indeed, games against nature can easily be reduced to one-player,
payoff uncertain games.

Example 4. Go back to the game of Example 1. The same game against Nature can be thought of
as the one-player game where the utility profiles of the subgame 𝑀𝑃 are determined by the residual
uncertainty parameter 𝜃0 ∈ {𝜃′

0, 𝜃″
0}, and 𝑈A(𝐼𝑛.H, 𝜃′

0) = 𝑈A(𝐼𝑛.T, 𝜃″
0 ) = 2, 𝑈A(𝐼𝑛.H, 𝜃″

0 ) =
𝑈A(𝐼𝑛.T, 𝜃′

0) = 1. Adapting the reasoning on priors to this payoff uncertain setting does not alter
the results, as long as feedback is such that realized utility is observed, but an off-path realization
of 𝜃0 is not. ◁

It must be kept in mind, however, that while in complex games substituting a payoff uncertain
representation with one that only features moves of chance and no payoff uncertainty may simplify
the initial mathematical structure, it would also require more intricate descriptions of players’
knowledge of the rules of the game and feedback. In Example 3, if 𝜃 were determined through a
fictitious move of chance 𝑞0(𝜃 = 0.1) = 1, in order to achieve a formal equivalence of the analysis
with the initial interpretation as private knowledge of Player 2, it would be necessary to introduce
a multistage structure, and it would not make sense to analyze the strategic form of the game.
This is because Player 2 should always have knowledge of the actual value of the parameter before
choosing her strategy.

4. an application

In this section, I present a simple application of the above framework to a contracting game,
highlighting how certainty crises and non-Bayesian decision making may lead to inefficient out-
comes. The game purposefully exhibits strong links with models of Adverse Selection and Moral
Hazard (Akerlof, 1995; Mirrlees, 1999). Traditional versions of these theories typically rely on
Bayes-Nash Equilibrium analysis. This application instead serves to appreciate the implications
of Self-Confirming Equilibrium and ambiguity aversion for negotiation. Strategic interaction in
the context of surplus sharing is also the fundamental feature of bargaining problems. A sur-
vey of models and equilibrium analysis (particularly, subgame-perfect equilibrium) for bargaining
problems is provided by Osborne and Rubinstein (1991).

Section 4.1 describes the context of the game. Variables are introduced, together with specific
numerical values, which are then used to clarify key insights. To this end, an example is conducted
in Section 4.2, together with a more general comparative statics exercise, where Theorem 1 is
applied to identify bounds on perception of ambiguity which may prevent certainty traps, as
functions of the original variables.

4.1. Contract game description

The setting echoes the illustration of Section 3.2. A thick job market is composed of two large
populations: Workers 𝒲 and Firms 𝔉. At every repetition of the game, some 𝑊 ∈ 𝒲 and 𝐹 ∈ 𝔉
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are matched at random. 𝑊 moves first, and must decide whether to apply for a job (𝐽) at 𝐹 at
cost 𝑐 = 1,24 or not (𝑁𝐽). If he applies, then he must choose whether to exert effort (𝐸) at private
cost 𝑒 = 3, or shirk (𝑆).

Simultaneously25, the firm 𝐹 decides whether to Collaborate (𝐶) with the worker, which in-
volves upfront cost 𝑚 = 4, or Not (𝑁𝐶), which is costless. If 𝐹 does Not collaborate, worker
productivity is stale, and independent of effort. In this case, the worker receives a fixed pay-
ment schedule, making shirking optimal. Collaboration instead provides advanced technology,
that crucially becomes productive only if the worker has previously exerted effort. Delivery of
this technology occurs near the end of the contract, ensuring that 𝑊 must commit to his effort
level beforehand, without knowing 𝐹 ’s choice. The payment structure in case of Collaboration
is designed to incentivize effort: shirkers (𝑆) receive no payment, while diligent workers (𝐸) are
compensated with a bonus above their effort cost.

Let 𝑅, 𝑃 denote the Revenue and Payment (wage) functions, respectively. For notational
convenience, also denote the share of revenues appropriated by the Firm by Π𝑠 ∶= 𝑅𝑠 − 𝑃𝑠,
where 𝑠 denotes the (reduced) strategy profile. For the numerical example, assume the following
specifications:

𝑅(𝑠) ∶=
⎧{
⎨{⎩

12 𝑠 = (𝐽.𝐸, 𝐶)
𝑅0 𝑠 = (𝑁𝐽, ⋅)
3 otherwise

𝑃(𝑠) ∶=
⎧{
⎨{⎩

6 𝑠 = (𝐽.𝐸, 𝐶)
3 𝑠𝐹 = 𝑁𝐶
0 otherwise

Let feedback be given by26 𝐹 𝑖(𝑠) = (𝑅𝑠, 𝑃𝑠) for 𝑖 ∈ {𝑊, 𝐹}. One can quickly verify that this game
satisfies Observed Payoffs in the sense of Definition 1, while it does not satisfy Definition 6. This
is sensible as firms observe revenues, reward workers accordingly, and workers observe their salary
and effort. As stressed above, 𝑚 > Π𝑆,𝐶 , that is, if 𝐹 recognizes a shirker then it does not reward
him, but nonetheless incurs a loss. Aside from the necessary condition of Firm Cooperation to
achieve higher profits, other assumptions on payoffs are consistent with typical models of Moral
hazard. The firm is concerned with the level of effort on the part of the worker, and without
monitoring technologies it cannot ex-ante ensure itself against shirking.

Let us introduce an additional strategy for the Firm: Cooperation with Insurance (𝐼). If 𝐹
wishes to cooperate, but is sufficiently worried that the worker might shirk, it can stipulate a
parallel insurance contract27 at premium 𝑝 = 3, with potential payout 𝑏 = 6 > 𝑝 in case of low
revenue. By choosing 𝐼 , worker compensation is the same as in the case of cooperation, while Firm
profits change. If 𝑊 exerts effort, the firm bears the insurance cost and incurs a loss equal to
Π𝐸,𝐶 − 𝑚 − 𝑝 = −1. On the other hand, in case of shirking the insurance payout offsets losses and
the Firm obtains Π𝑆,𝐶 − 𝑝 + 𝑏 = 2. In principle, insurance allows Firms to always achieve greater
expected profits than by choosing 𝑁𝐶. The tree of the game is shown in Figure 5, while Figure 6
depicts the strategic form, where numerical values for all relevant variables have been substituted
in for clearer interpretation of the example.

The key strategic challenge is mutual commitment. Neither party can observe the other’s
choice in advance. The firm only wants to collaborate when confident of worker effort, while the
worker would always exert effort if certain of collaboration. Post-contract, the firm can verify
technology usage, creating a monitoring mechanism that aligns incentives. If the worker shirks,
the advanced technology becomes worthless, and the firm incurs additional losses—even without

24The application cost 𝑐 can be alternatively interpreted as reservation utility of the worker.
25Simultaneity is in fact non-essential and shall here be interpreted as a technical property of the rules of the

game; it is key, however, that 𝑊 ’s choice cannot be observed by 𝐹 .
26I use 𝐹 to denote feedback in this game in order to distinguish it from player index 𝐹 used for Firms.
27This assumption allows flexible interpretation: in reality, firms may devise a number of financial and nonfinancial

strategies to insure themselves against the possibility of hiring a bad employee. One simple strategy we can imagine
is conducting parallel hiring processes at a cost to be able to replace the departing employee more quickly.
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Figure 5: Contract game tree.

W

W( 𝑐
Π0

) 𝑁𝐽

𝐽

F

𝑁𝐶 𝐶 𝐼

(𝑃𝑁𝐶
Π𝑁𝐶

) 𝑆

(𝑃𝑁𝐶 − 𝑒
Π𝑁𝐶

)
𝐸

( 𝑃𝑆,𝐶
Π𝑆,𝐶 − 𝑚)

𝑆

( 𝑃𝐸,𝐶 − 𝑒
Π𝐸,𝐶 − 𝑚)

𝐸

( 𝑃𝐸,𝐶 − 𝑒
Π𝐸,𝐶 − 𝑚 − 𝑝)

𝐸

( 𝑃𝑆,𝐶
Π𝑆,𝐶 − 𝑚 − 𝑝 + 𝑏)𝑆

Figure 6: Strategic form of the Contract game.

W
F 𝑁𝐶 𝐶 𝐼

𝑁𝐽 1, Π0 1, Π0 1, Π0
𝐽.𝐸 0, 0 3, 2 3, −1
𝐽.𝑆 3, 0 0, −1 0, 2

paying the worker. After the negotiation, the contract is carried out, 𝑊 and 𝐹 are separated, and
the procedure is repeated.

The game is designed to capture relational contracting, a fundamental coordination challenge in
labor markets.28 Both firms and workers face incentives to make relation-specific investments only
when they can credibly anticipate reciprocal commitment from their counterparty. The assumption
that neither party can privately influence the market outcome adds a further layer to this bilateral
hold-up problem, which characterizes many medium-term employment relationships.

4.2. Comparative statics and market shutdown

To fix ideas, consider the numerical example, whose strategic-form representation can be seen in
Figure 6, and focus on SEU-maximizing players first. As in Section 3.2, a Bayesian worker 𝑊
would never choose 𝑁𝐽 , since for any 𝜎𝐹 ∈ Δ({𝑁𝐶, 𝐶, 𝐼}):

max
𝑠𝑊 ∈{𝐽.𝐸,𝐽.𝑆}

𝑉𝑊 (𝑠𝑊 , 𝜎𝐹 ) = max{3𝜎𝐹 (𝑁𝐶), 3(1 − 𝜎𝐹 (𝑁𝐶))} ≥ 1.5 > 1 = 𝑉𝑊 (𝑁𝐽, 𝜎𝐹 )

Showing that a Bayesian 𝐹 has the possibility of insuring itself against shirkers and therefore it
would never pick 𝑁𝐶, regardless of its belief, is analogous. As a result workers, who do not pick
𝑁𝐽 , perfectly observe that firms are always choosing either 𝐶 or 𝐼 . As the game repeats, by
observing their payoffs they quickly learn that 𝑁𝐶 is not being chosen and thus it is optimal for
them to exert effort. In turn, and also by observing their payoffs, firms can indirectly observe
𝐽.𝐸, and the only rational reply is to choose 𝐶. Again, the same reasoning applies to firms.

28The issue of relational contracts and relation-specific investments has been widely discussed. For more articulate
theoretical insights, see Crawford (1990) and Baker et al. (2002), and the references therein.
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Whatever their conjecture, they always choose 𝐶 or 𝐼 . Although they initially may choose to
stipulate the insurance, in the long run they would observe that all workers are exerting effort, and
begin collaborating. Simply put, the game necessarily converges toward the efficient coordination
outcome for both parties, i.e. (𝐽.𝐸, 𝐶). This is the unique Bayes-Nash equilibrium of the game,
and the unique SCE for Bayesian players. Note that, although insurance is never picked, its
presence is key. Without it, equilibrium sets would be quite different: let (𝐺, 𝐹) denote the game
with feedback described in Section 4.1, and let 𝐺 denote the modification of 𝐺 where strategy 𝐼 is
removed from the choice set of players 𝐹 ∈ 𝔉. Then

𝐵𝑁𝐸(𝐺) = 𝑆𝐶𝐸(𝐺) = {(𝐽.𝐸, 𝐶)}

⊆ 𝐵𝑁𝐸(𝐺) = {(𝐽.𝑆, 𝑁𝐶), (𝐽.𝐸, 𝐶), (1
3𝛿𝐽.𝐸 + 2

3𝛿𝐽.𝑆, 1
2𝛿𝑁𝐶 + 1

2𝛿𝐶)}

⊆ 𝑆𝐶𝐸(𝐺, 𝐹) = 𝐵𝑁𝐸(𝐺) ∪ {(𝐽.𝐸, 𝛼𝛿𝑁𝐶 + (1 − 𝛼)𝛿𝐶) ∶ 𝛼 < 0.5}

∪ {(𝛽𝛿𝐽.𝐸 + (1 − 𝛽)𝛿𝐽.𝑆, 1
2𝛿𝑁𝐶 + 1

2𝛿𝐶) ∶ 𝛽 > 1
3}

Now turn to ambiguity averse players. The structure of payoffs is such that uncertainty averse
agents may pick 𝑁𝐽 : e.g. for 𝜑𝑊 = 𝑈1/𝛼

𝑊 and 𝛼 > log2 3, 𝑁𝐽 is justifiable as a best reply to
𝜇𝑊 = 1

2 𝛿𝑁𝐶 + 1
2 𝛿𝐶 . The same applies to firms: if they are sufficiently ambiguity averse and

aware, they may choose 𝑁𝐶, thereby cancelling the efficacy of the presence of insurance. The
set of 𝑆𝑆𝐶𝐸 is thus much larger, including mixed profiles which assign positive probabilities to
subjectively optimal, yet objectively suboptimal strategies. For instance, sets {𝑁𝐽} × Δ(𝑆𝐹 ) and
Δ(𝑆𝑊 \{𝐽.𝐸}) × {𝑁𝐶} are both subsets of 𝑆𝑆𝐶𝐸(𝐺, 𝜔). Simply introducing ambiguity aver-
sion into to the model can easily make insurance useless and lead to market shutdowns, in the
form of chronic worker shortages or pathological underinvestment. Insurance is unhelpful in this
case because ambiguity aversion will either lead workers not to seek employment at all, or firms
to underestimate the objective support offered by the decoy strategy to reach the coordination
equilibrium.

It is also possible to make Theorem 1 operational, and obtain conditions for the occurrence of
certainty traps, i.e., equilibria that are only possible when players are sufficiently ambiguity averse.
We will conduct this exercise from the perspective of a worker; the reasoning is exactly the same
for firms. Recall that the principle of reduction of compound lotteries applies to risky decisions.
To avoid market shutdown it is necessary that

𝑐 < 𝑉𝜇𝑊
(𝐽) = max{𝑉𝜇𝑊

(𝐽.𝐸), 𝑉𝜇𝑊
(𝐽.𝑆)}

= max
⎧{
⎨{⎩

𝜑−1
𝑊 ⎛⎜

⎝
∑

𝜋̂∈supp𝜇𝑊

𝜑𝑊 (𝑃𝐸,𝐶 + ̂𝜋(𝑁𝐶)(𝑃𝑁𝐶 − 𝑃𝐸,𝐶) − 𝑒)𝜇𝑊 ( ̂𝜋)⎞⎟
⎠

,

𝜑−1
𝑊 ⎛⎜

⎝
∑

𝜋̂∈supp𝜇𝑊

𝜑𝑊 (𝑃𝑆,𝐶 + ̂𝜋(𝑁𝐶)(𝑃𝑁𝐶 − 𝑃𝑆,𝐶)) 𝜇𝑊 ( ̂𝜋)⎞⎟
⎠

⎫}
⎬}⎭

This condition simply requires that the entry cost 𝑐 that would be saved by choosing 𝑁𝐽 be smaller
than the certainty equivalent of the subjectively optimal choice. If we consider the maximal degree
of uncertainty perception, i.e. a second-order belief evenly split among the most extreme outcomes
compatible with objective evidence, bounds on ambiguity aversion can again be found analogously
to Section 3.2:

𝑐 < 𝜑−1
𝑊 (1

2 max {𝜑𝑊 (𝑃𝑁𝐶 − 𝑒) + 𝜑𝑊 (𝑃𝐸,𝐶 − 𝑒), 𝜑𝑊 (𝑃𝑁𝐶) + 𝜑𝑊 (𝑃𝑆,𝐶)}) (15)

Explicit conditions on parameters can be derived through (15) by considering specific functional
forms for 𝜑𝑊 . Conversely, we can consider a given degree of ambiguity aversion and calculate
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bounds on perception to avoid certainty traps. For instance, if 𝑊 is extremely averse to ambiguity,
we have the following sufficient condition:

𝑐 < max { min
𝜋̂∈supp𝜇𝑊

𝑃𝑆,𝐶 + ̂𝜋(𝑁𝐶)(𝑃𝑁𝐶 − 𝑃𝑆,𝐶), min
𝜋̂∈supp𝜇𝑊

𝑃𝐸,𝐶 + ̂𝜋(𝑁𝐶)(𝑃𝑁𝐶 − 𝑃𝐸,𝐶) − 𝑒}

which reduces to:29

min
𝜋̂∈supp𝜇𝑊

̂𝜋(𝑁𝐶) > 𝑐 − 𝑃𝑆,𝐶
𝑃𝑁𝐶 − 𝑃𝑆,𝐶

∨ max
𝜋̂∈supp𝜇𝑊

̂𝜋(𝑁𝐶) < 𝑃𝐸,𝐶 − 𝑐 − 𝑒
𝑃𝐸,𝐶 − 𝑃𝑁𝐶

(16)

In the more general case of a given profile of smooth functionals 𝜑, we can again consider the
maximally uncertain belief within some given interval of utility values compatible with the infor-
mation constraint. Then, we can find a sufficient condition on the maximal distance of models in
the support to prevent certainty traps. Let

𝜋 ∶= max
𝜋̂∈supp𝜇𝑊

1 − ̂𝜋(𝑁𝐶) 𝜋 ∶= max
𝜋̂∈supp𝜇𝑊

̂𝜋(𝑁𝐶)

denote the objective models which make subjectively most appealing choosing 𝐽.𝐸 and 𝐽.𝑆, re-
spectively. Then |𝜋 − 𝜋| must satisfy:

2𝜑𝑊 (𝑐) < max {𝜑𝑊 (𝑃𝐸,𝐶 − 𝑒 + 𝜋(𝑃𝑁𝐶 − 𝑃𝐸,𝐶)) + 𝜑𝑊 (𝑃𝐸,𝐶 − 𝑒 + 𝜋(𝑃𝑁𝐶 − 𝑃𝐸,𝐶))
𝜑𝑊 (𝑃𝑆,𝐶 + 𝜋(𝑃𝑁𝐶 − 𝑃𝑆,𝐶)) + 𝜑𝑊 (𝑃𝑆,𝐶 + 𝜋(𝑃𝑁𝐶 − 𝑃𝑆,𝐶))}

Also in this case, an explicit solution for this sufficient condition can be derived only when a specific
form for 𝜑𝑊 is considered.

5. conclusions and limitations

An extensive general framework for Self-Confirming Equilibrium analysis of the strategic form of
games with feedback, ambiguity attitudes, and payoff uncertainty has been provided. The results
of BCMM are shown to generalize seamlessly to the case of payoff uncertainty. Most importantly,
I have given a rigorous account of the game-theoretic interplay between uncertainty aversion and
perception, clarifying that even in presence of mild aversion to ambiguity, agents who are more
aware of the uncertainty present in their decision environment can get stuck in certainty traps.

The intuition for this fact is a direct consequence of the representation of KMM, who char-
acterized ambiguity aversion as dread toward mean-preserving spreads of second-order beliefs in
the space of expected utility values. A game-theoretic framework proves particularly illuminating
in demonstrating how this feature can lead to objectively inferior decisions. Section 3 reveals the
conditions required for this result are remarkably modest. It is sufficient to pose mild restrictions
on the width of supports of beliefs to control flexibly the perception of ambiguity, while preserving
the game’s fundamental structure.

The application of Section 4 makes these theoretical results operational, demonstrating their
relevance for microeconomic theory and particularly for models of adverse selection and relational
contracting. Ambiguity aversion can fundamentally alter strategic interactions in employment re-
lationships, potentially explaining observed patterns of inefficient contracting and underinvestment
in human capital. This framework provides new insights into why seemingly beneficial long-term
relationships might fail to materialize, even when they would objectively improve upon current
arrangements. These results offer practical insights for organizational design and policy-making.
They suggest that mechanisms for reducing strategic uncertainty, including reputation systems,

29Existence is taken for granted provided that 𝑐 + 𝑒 ≤ 𝑃𝐸,𝐶 is necessary for participation.
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standardized practices, or industry norms, might be more valuable than previously recognized, as
they could help overcome the coordination failures identified in the analysis.

The framework of Battigalli et al., 2019b would be most germane to the exploration of conse-
quences on steady-state convergence of early conjectural revisions occurring in learning environ-
ments. Additionally, a more robust analysis would refer to extensive-form games where players
can change continuation strategy at any non-terminal history (Battigalli et al., 2019a), in light of
the implications of dynamic inconsistency pointed out in Section 2. In both cases, however, the
complexity of mathematical objects involved grows noticeably. An exploration of comparative am-
biguity perception in these settings is open to further research. In addition, a deeper understanding
of the normative foundations of ambiguity perception would strengthen the economic significance
of the analysis of games with restrictions on beliefs conducted in Section 3.

Nevertheless, core insights remains robust: heightened ambiguity aversion generates a status
quo bias, whose likelihood increases with the perception of such ambiguity. Certainty crises, or
deeply embedded uncertainty-averse cultures, can trap economic agents in inefficient equilibria.
While multiple-prior models primarily address subjective rather than objective rationality, the
existence of an objective probability distribution—if such exists—must be unique. Thus, although
uncertainty aversion may be consistent with subjective rationality, and uncertainty averse decision-
makers may never be convinced their choices are suboptimal, this trait can inadvertently become
self-defeating.
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appendix

Lemma 1

Proof. Let 𝑖 ∈ 𝐼, 𝑠𝑖 ∈ 𝑆𝑖, 𝜎∗
−𝑖 ∈ Δ(𝑆−𝑖). Payoff observability implies the section of payoff

function 𝑈𝑠𝑖,𝜃𝑖
must be ℱ𝑠𝑖

-measurable: that is, any payoff value corresponds to a measurable
set in partition ℱ𝑠𝑖,𝜃𝑖

. This measurability implies that if two distributions ̂𝜋(𝜃0, 𝜃−𝑖, 𝑠−𝑖) and
𝑞0(𝜃0)𝑞−𝑖(𝜃−𝑖)𝜎∗

−𝑖(𝑠−𝑖|𝜃−𝑖) have the same ℱ𝑠𝑖
measure, they will induce the same conditional dis-

tribution (i.e., conditional on ℱ𝑠𝑖
, 5th equality below). Formally, for any ̂𝜋 ∈ Σ̂−𝑖,𝜃𝑖

,

𝑈𝑖(𝑠𝑖, 𝜃𝑖, ̂𝜋) = ∑
(𝜃0,𝜃−𝑖,𝑠−𝑖)∈Θ0×Θ−𝑖×𝑆−𝑖

𝑈𝑖(𝑠𝑖, 𝜃, 𝑠−𝑖) ̂𝜋(𝜃0, 𝜃−𝑖, 𝑠−𝑖)

= ∫
Θ0×Θ−𝑖×𝑆−𝑖

𝑈𝑖(𝑠𝑖, 𝜃, 𝑠−𝑖) ̂𝜋(d𝜃0, d𝜃−𝑖, d𝑠−𝑖)

= ∫
Θ0×Θ−𝑖×𝑆−𝑖

𝑈𝑠𝑖,𝜃𝑖
̂𝜋(d𝜃0, d𝜃−𝑖, d𝑠−𝑖)

= ∫
Θ0×Θ−𝑖×𝑆−𝑖

𝑈𝑠𝑖,𝜃𝑖
̂𝜋(d𝜃0, d𝜃−𝑖, d𝑠−𝑖)|ℱ𝑠𝑖,𝜃𝑖

= ∫
Θ0×Θ−𝑖×𝑆−𝑖

𝑈𝑠𝑖,𝜃𝑖,𝑞−𝑖
𝜎∗

−𝑖(d𝑠−𝑖|𝜃−𝑖)𝑞0(d𝜃0)𝑞−𝑖(d𝜃−𝑖)|ℱ𝑠𝑖,𝜃𝑖

= ∫
Θ−𝑖

∫
Θ0

∫
𝑆−𝑖

𝑈𝑠𝑖,𝜃𝑖,𝑞−𝑖
𝜎∗

−𝑖(d𝑠−𝑖|𝜃−𝑖)𝑞0(d𝜃0)𝑞−𝑖(d𝜃−𝑖)

= ∑
(𝜃0,𝜃−𝑖,𝑠−𝑖)∈Θ0×Θ−𝑖×𝑆−𝑖

𝑈𝑖(𝑠𝑖, 𝜃𝑖, 𝑞−𝑖, 𝑠−𝑖)𝜎∗
−𝑖(𝑠−𝑖|𝜃−𝑖)𝑞0(𝜃0)𝑞−𝑖(𝜃−𝑖)

= 𝑈𝑖(𝑠𝑖, 𝜃𝑖, 𝑞−𝑖, 𝜎∗
−𝑖)

Lemma 2

Proof. I show how to adapt the standard equivalence result on second-order stochastic dominance
to a framework with subjective beliefs, rather than lotteries. I prove the “only if” part: as the
random variables are shown to satisfy SOSD for all concave functions in the sense of Rothschild
& Stiglitz (1970), the reverse implication holds due to their Theorem 2. Let 𝑠 ∈ 𝑆 denote a
state of the world and Σ the 𝜎-algebra defined on Δ(𝑆). Let 𝑈𝑠𝑖,𝜃𝑖

∶ Δ(Θ0 × Θ−𝑖 × 𝑆−𝑖) → ℝ
be (the (𝑠𝑖, 𝜃𝑖)-section of) a Bernoulli utility function defined on the space of objective lotteries.
To simplify notation, we simply write 𝑈𝑖 in place of 𝑈𝑠𝑖,𝜃𝑖

. Let 𝜑𝑖 be a strictly increasing and
weakly concave function, and 𝜈𝑖, 𝜇𝑖 be two subjective beliefs such that 𝜇𝑖 is an MPS of 𝜈𝑖 on the
space of expected utility values. This immediately implies ∫Σ 𝑈𝑖( ̂𝜋(𝑠))𝜈𝑖 (d ̂𝜋) = ∫Σ 𝑈𝑖( ̂𝜋(𝑠))𝜇𝑖 (d ̂𝜋).
An objective probability law on unknown states ̂𝜋 and the utility function jointly induce objective
expected utility (a lottery) with value

𝑢 ∶= 𝑈𝑖( ̂𝜋) ∈ 𝕌 ∶= Im𝑈𝑖 = [min
𝜋∈Σ

𝑈𝑖(𝜋), max
𝜋∈Σ

𝑈𝑖(𝜋)] ⊆ ℝ

where the minimum and maximum are well-defined by compact-valuedness of Σ. Since when payoffs
are observable 𝑈𝑠𝑖

is always ℱ𝑠𝑖
-measurable, we can write — with a slight abuse of notation, i.e.

identifying a belief 𝜇 on objective lotteries with its push-forward 𝜇 ∘ 𝑈−1 on the space of expected
utility values

∫
Σ

𝜑 (𝑈( ̂𝜋(𝑠))) 𝜈 (d ̂𝜋) = ∫
𝕌

𝜑 (𝑢) 𝜈 (d𝑢)
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Since 𝜇 is a mean-preserving spread of 𝜈, there exists some random variable 𝑧 such that, for 𝑣 ∼ 𝜈
and 𝑢 ∼ 𝜇, 𝑢 𝐷= 𝑣 + 𝑧 and 𝔼(𝑧|𝑣) = 0 for every 𝑣 ∈ 𝕌. By the law of iterated expectations and the
MPS relation: 𝔼𝜇𝑖(𝜑𝑖(𝑢)) = 𝔼𝜈𝑖(𝜑𝑖(𝑢)) = 𝔼𝜈𝑖(𝜑𝑖(𝑣 + 𝜀)) = 𝔼𝜈𝑖 [𝔼(𝜑𝑖(𝑣 + 𝜀)|𝑣)]. Therefore we may
write

∫ 𝜑𝑖(𝑢)𝜇𝑖(d𝑢) = ∫ 𝔼 [𝜑𝑖(𝑣 + 𝜀)|𝑣] 𝜈𝑖(d𝑣)

≤ ∫ 𝜑𝑖 (𝔼 [𝑣 + 𝜀|𝑣]) 𝜈𝑖(d𝑣)

= ∫ 𝜑𝑖(𝔼 [𝑣|𝑣]⏟
=𝑣

+ 𝔼 [𝜀|𝑣]⏟
=0

)𝜈𝑖(d𝑣)

= ∫ 𝜑𝑖(𝑣)𝜈𝑖(d𝑣)

The inequality is an application of Jensen’s inequality valid for any weakly concave function, and
we can separate the sum in the expected value by linearity of the operator. Hence, 𝜈𝑖 second-order
stochastically dominates 𝜇𝑖 under 𝜑𝑖.

Lemma 3

Proof. I prove that 𝜇 is an MPS of Σ-measurable function (probability distribution) 𝜈 on the space
of expected utility values if

1. ∫Σ ̂𝜋(𝑠)𝜈 (d ̂𝜋) = ∫Σ ̂𝜋(𝑠)𝜇 (d ̂𝜋)
2. conv supp𝜈 ⊂ conv supp𝜇

Step 1: Condition (1) is equivalent to ∫Σ 𝑈( ̂𝜋(𝑠))𝜈 (d ̂𝜋) = ∫Σ 𝑈( ̂𝜋(𝑠))𝜇 (d ̂𝜋). The two measures are
necessarily absolutely continuous (with respect to the Lebesgue measure), so that we can invoke
the Radon-Nykodym theorem and, together with the results of Lemma 2 restate condition 1 as

∫
𝕌

𝑢 𝜈 (𝑢) d𝑢 = ∫
𝕌

𝑢 𝜇 (𝑢) d𝑢

That is, 𝔼𝜈(𝑢) = 𝔼𝜇(𝑢).
Step 2: Let 𝑔 = 𝜇−𝜈 denote the function which describes the probability spread between the two
distributions , with 𝐺(𝑢) = ∫𝑢

−∞ 𝑔(𝑡)d𝑡. We need to prove that 𝑇 (𝑦) ∶= ∫𝑦
−∞ 𝐺(𝑢)d𝑢 ≥ 0 ∀𝑦 ∈ ℝ

with 𝑇 (∞) = 0. By Lemma 1∗ in Deb & Seo (2011), Lemma 2 and Theorem 2 in Rothschild &
Stiglitz (1970), this proves that 𝜇 is a MPS of 𝜈.

Let 𝑢 ∶= inf supp𝜇 and 𝑢 ∶= sup supp𝜇, 𝑣 ∶= inf supp𝜈 and 𝑣 ∶= sup supp𝜈. Condition
(2) guarantees 𝑢 < 𝑣 or 𝑢 > 𝑣. Consider the first case; the other is symmetric. Clearly, then,
∫𝑢
−∞ 𝜇(𝑡)d𝑡 = ∫𝑢

−∞ 𝜈(𝑡)d𝑡 = 0 and ∫𝑢
−∞ 𝜇(𝑡)d𝑡 = ∫𝑢

−∞ 𝜈(𝑡)d𝑡 = 1, so that 𝑔(𝑢) = 𝐺(𝑢) = 0 ∀𝑢 ∉ [𝑢, 𝑢].
This automatically grants 𝑇 (∞) = 𝑦𝐺(𝑦)]∞−∞ − ∫∞

−∞ 𝑢𝑔(𝑢)d𝑢 = 0 (since in this case 0 is rapidly
reached within 𝑔 on a bounded subset of the real line, the limit is not indeterminate). Additionally,
𝑢 ∈ [𝑢, 𝑣) ⇒ 𝑔(𝑢) > 0 ⇒ 𝐺(𝑢) > 0.

There is a unique point 𝑐 ≥ 𝑣 such that 𝐺(𝑢) ≥ 0 ∀𝑢 ≤ 𝑐 and 𝐺(𝑢) ≤ 0 ∀𝑢 > 𝑐. Assume by
way of contradiction this were not the case, i.e. 𝐺 changes sign more than once. Then there exists
(at least one) point 𝑐′ > 𝑐 such that

• 𝐺(𝑢) ≥ 0 if 𝑢 ≤ 𝑐;

• 𝐺(𝑢) ≤ 0 if 𝑢 ∈ (𝑐, 𝑐′);
• 𝐺(𝑐′) > 0.
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But this cannot be: either (i) 𝐺(𝑢) ≥ 0 for every 𝑢 > 𝑐′, in which case 𝜇 conserves more
probability density until the end of the distribution, contradicting 𝑇 (∞) = 0, or (ii) the latter is
satisfied, which requires 𝐺(𝑐″) < 0 for some other 𝑐″ ∈ (𝑐′, 𝑣], in which case the mean-preservation
assumption is necessarily contradicted, as probability mass or density has been moved towards the
lower end of the distribution on net. In accordance with this, it follows that 𝑇 (𝑦) ≥ 0 ∀𝑦 ≤ 𝑐. For
𝑦 > 𝑐, note that

𝑇 (𝑦) = 𝑇 (𝑐)⏟
≥0

+ ∫
𝑦

𝑐
𝐺(𝑢)d𝑢

Since ∀𝑢 > 𝑐, 𝐺(𝑢) ≤ 0, 𝑇 (𝑦) must be nonincreasing for all 𝑦 > 𝑐. Since also 𝑇 (𝑦) = 0 ∀𝑦 ≥ 𝑢, it
follows that 𝑇 (𝑦) ≥ 0 ∀𝑦, which completes the proof.

Proposition 1

Proof. If 𝑆𝑆𝐶𝐸(𝐵𝐺, 𝜑, 𝜈) = ∅, the statement vacuously holds. Assume 𝑆𝑆𝐶𝐸(𝐵𝐺, 𝜑, 𝜈) ≠ ∅. Let
𝜎∗ ∈ 𝑆𝑆𝐶𝐸(𝐵𝐺, 𝜑, 𝜈) and consider some 𝜃𝑖 and 𝑠∗

𝑖 ∈ supp𝜎∗
𝜃𝑖

. The game is assumed to satisfy
Def. 1; by Lemma 1,

𝑉 𝜑𝑖
𝜃𝑖

(𝑠∗
𝑖 , 𝜈𝑖

𝑠𝑖,𝜃𝑖
) = 𝑉 𝜑𝑖

𝜃𝑖
(𝑠∗

𝑖 , 𝜇𝑖
𝑠𝑖,𝜃𝑖

) = 𝑈𝑖(𝑠∗
𝑖 , 𝜃𝑖, ̂𝜋) = 𝑈𝑖(𝑠∗

𝑖 , 𝜃𝑖, 𝑞−𝑖, 𝜎∗
−𝑖) ∀ ̂𝜋 ∈ Σ̂−𝑖,𝜃𝑖

(𝑠∗
𝑖 , 𝑞−𝑖, 𝜎∗

−𝑖)

By Lemma 2, if 𝜑𝑖 is weakly concave and 𝜇𝑖
𝑠𝑖,𝜃𝑖

is a mean-preserving spread of 𝜈𝑖
𝑠𝑖,𝜃𝑖

, for every
𝑠𝑖 ∈ 𝑆𝑖,

𝑉 𝜑𝑖
𝜃𝑖

(𝑠∗
𝑖 , 𝜇𝑖

𝑠𝑖,𝜃𝑖
) = 𝑈𝑖(𝑠∗

𝑖 , 𝜃𝑖, 𝑞−𝑖, 𝜎∗
−𝑖)

= 𝑉 𝜑𝑖
𝜃𝑖

(𝑠∗
𝑖 , 𝜈𝑖

𝑠𝑖,𝜃𝑖
) ≥ 𝑉 𝜑𝑖

𝜃𝑖
(𝑠𝑖, 𝜈𝑖

𝑠𝑖,𝜃𝑖
)

= ∫ 𝜑𝑖 (𝑈𝑖(𝑠𝑖, 𝜃𝑖, ̂𝜋)) 𝜈𝑖
𝑠𝑖,𝜃𝑖

(d ̂𝜋)

≥ ∫ 𝜑𝑖 (𝑈𝑖(𝑠𝑖, 𝜃𝑖, ̂𝜋)) 𝜇𝑖
𝑠𝑖,𝜃𝑖

(d ̂𝜋) = 𝑉 𝜑𝑖
𝜃𝑖

(𝑠𝑖, 𝜇𝑖
𝑠𝑖,𝜃𝑖

)

Since the support of 𝜇𝑖
𝑠𝑖,𝜃𝑖

is contained in Σ̂−𝑖,𝜃𝑖
(𝑠∗

𝑖 , 𝑞−𝑖, 𝜎∗
−𝑖) by assumption, the statement

holds.

Theorem 1

Proof. First note that the second inclusion always holds by construction and, if 𝜀 = 0, then
𝑆𝑆𝐶𝐸(𝐵𝐺, 𝜑, 𝜀) = 𝑆𝐶𝐸(𝐵𝐺, 𝐹). If 𝛾 = 0, the whole statement vacuously holds. Consider then
the generic case 𝜀, 𝛾 > 0, and a profile of beliefs 𝜇 ∈ 𝑅𝜀. Either 𝜇 ∈ 𝑅∗

𝜀 or 𝜇 ∈ 𝑅𝜀\𝑅∗
𝜀. In the first

case, 𝜇 ∈ 𝑅𝛾
𝜀 , hence the equilibrium set for this belief is preserved. Assume it is the nontrivial case

(otherwise, the belief is irrelevant) where 𝑆𝑆𝐶𝐸(𝐵𝐺, 𝜑, 𝜇) ≠ ∅. As mentioned in the text, igno-
rance of the matching process ensures convexity of Σ̂−𝑖,𝜃𝑖

for any strategy profile. Let 𝜇 ∈ 𝑅𝜀\𝑅∗
𝜀.

Then by definition there exist 𝑖 ∈ 𝐼, 𝜃𝑖 ∈ Θ𝑖, 𝜎∗ ∈ 𝑆𝑆𝐶𝐸(𝐵𝐺, 𝜑, 𝜇) and 𝑠𝑖 ∈ supp𝜎∗
𝑖 such that we

can construct a new profile ̃𝜇 as follows.

Let 𝑢 ∶= inf𝜋̂∈supp𝜇𝑖
𝑠𝑖,𝜃𝑖

𝑈𝑠𝑖,𝜃𝑖
( ̂𝜋) and 𝑢 ∶= sup𝜋̂∈supp𝜇𝑖

𝑠𝑖,𝜃𝑖
𝑈𝑠𝑖,𝜃𝑖

( ̂𝜋). These utility values can
be attained within the support of 𝜇𝑖

𝑠𝑖,𝜃𝑖
as the game is finite, hence the suprema are maxima.

Denote the expected utility profile by 𝑢̂ ∶= ∫𝑢
𝑢 𝑢 𝜇𝑖

𝑠𝑖,𝜃𝑖
(d𝑢). Then there exists 𝛽 ∈ (𝑢, 𝑢) such that

∫𝛽
𝑢 𝑢 𝜇𝑖

𝑠𝑖,𝜃𝑖
(d𝑢) = ∫𝑢

𝛽 𝑢 𝜇𝑖
𝑠𝑖,𝜃𝑖

(d𝑢) = 𝑢̂/2. Let 𝑎 = 𝜀 − (𝑢 − 𝑢) ∈ [0, 𝜀], and 𝑡 ∈ (𝑎, 𝑎 + 𝛾/2]. Then,
define

̃𝜇𝑖
𝑠𝑖,𝜃𝑖

(𝑢) ∶=
⎧{
⎨{⎩

𝜇𝑖
𝑠𝑖,𝜃𝑖

(𝑢 + 𝑡) 𝑢 ∈ [𝑢 − 𝑡, 𝛽 − 𝑡]
𝜇𝑖

𝑠𝑖,𝜃𝑖
(𝑢 − 𝑡) 𝑢 ∈ [𝛽 + 𝑡, 𝑢 + 𝑡]

0 otherwise
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For every other strategy, type and player, assume ̃𝜇 and 𝜇 coincide. Then, ̃𝜇 ∈ (𝑅𝜀+𝛾\𝑅𝜀). By
convexity of Σ̂−𝑖,𝜃𝑖

, and again by definition of 𝑅∗
𝜀 S 𝜇, an appropriate choice of 𝑖, 𝜃𝑖 and 𝑠𝑖 ensures

that for 𝑡 → 𝑎+, ̃𝜇𝑖
𝑠𝑖,𝜃𝑖

∈ Δ (Σ̂−𝑖,𝜃𝑖
(𝑠𝑖, 𝜎∗

−𝑖)). It is immediate to verify that ∫𝛽−𝑡
𝑢−𝑡 𝑢 ̃𝜇𝑖

𝑠𝑖,𝜃𝑖
(d𝑢) = 𝑢̂−𝑡

2 ,
∫𝑢+𝑡
𝛽+𝑡 𝑢 ̃𝜇𝑖

𝑠𝑖,𝜃𝑖
(d𝑢) = 𝑢̂+𝑡

2 , so that

∫
supp𝜇̃𝑖

𝑠𝑖,𝜃𝑖

𝑢 ̃𝜇𝑖
𝜃𝑖

(d𝑢) = ∫
𝑢+𝑡

𝑢−𝑡
𝑢 ̃𝜇𝑖

𝑠𝑖,𝜃𝑖
(d𝑢)

= ∫
𝛽−𝑡

𝑢−𝑡
𝑢 ̃𝜇𝑖

𝑠𝑖,𝜃𝑖
(d𝑢) + ∫

𝛽+𝑡

𝛽−𝑡
𝑢 ̃𝜇𝑖

𝑠𝑖,𝜃𝑖
(d𝑢)

⏟⏟⏟⏟⏟⏟⏟
=0

+ ∫
𝑢+𝑡

𝛽+𝑡
𝑢 ̃𝜇𝑖

𝑠𝑖,𝜃𝑖
(d𝑢)

= 𝑢̂
2 − 𝑡

2 + 𝑢̂
2 + 𝑡

2 = 𝑢̂

By Lemma 3 and Proposition 1, 𝑆𝑆𝐶𝐸(𝐵𝐺, 𝜑, 𝜇) ⊆ 𝑆𝑆𝐶𝐸(𝐵𝐺, 𝜑, ̃𝜇). Since 𝜇 was arbitrary, for
any 𝜇 ∉ 𝑅∗

𝜀 we can always find some ̃𝜇 ∈ (𝑅𝜀+𝛾\𝑅𝜀) ⊆ 𝑅𝛾
𝜀 as above.

Lemma 4

Proof. By Proposition 1 in BCMM, we know that if a game satisfies observable payoffs then
𝑀𝑆𝐶𝐸 ⊇ 𝑆𝑆𝐶𝐸, thus including those determined by any exogenous restriction on priors. Analo-
gously to their setting, it is sufficient to show that every MSCE is a Bayesian Equilibrium to prove
that also every SSCE is a Bayesian Equilibrium, regardless of the restrictions we put on beliefs
as long as we allow at least singleton support priors – which is the case since 𝐶1 ⊂ 𝑅𝜀 ∀𝜀 > 0
– considering that 𝑆𝑆𝐶𝐸(𝐵𝐺, 𝜑, 𝐶1) = 𝑆𝐶𝐸(𝐵𝐺, 𝑓). Hence we simply extend their proof to the
payoff uncertain case. Let 𝜎∗ be a MSCE of (𝐵𝐺, 𝜑) in accordance with Definition 4. By Lemma 1,
observability of payoffs implies that for any strategy 𝑠𝑖 of any 𝜃𝑖, 𝑈𝑖(𝑠𝑖, 𝜃𝑖, ̂𝜋) = 𝑈𝑖(𝑠𝑖, 𝜃𝑖, 𝑞−𝑖, 𝜎∗

−𝑖)
for every ̂𝜋 ∈ Σ̂−𝑖,𝜃𝑖

(𝑠𝑖, 𝑞−𝑖, 𝜎∗
−𝑖). Consider then some 𝜃𝑖 and 𝑠∗

𝑖 ∈ supp𝜎∗
𝜃𝑖

; OSI implies that
ℱ𝑠∗

𝑖,𝜃𝑖
= ℱ𝑠𝑖,𝜃𝑖

for every 𝑠𝑖 that is a best reply to some conjecture. We therefore have

Σ̂−𝑖,𝜃𝑖
(𝑠𝑖,𝑞−𝑖, 𝜎∗

−𝑖) =
= { ̂𝜋 ∈ Δ(Θ0 × Θ−𝑖 × 𝑆−𝑖) ∶ ̂𝜋(𝜃0, 𝜃−𝑖, 𝑠−𝑖)|ℱ𝑠𝑖,𝜃𝑖

= 𝑞0(𝜃0)𝑞−𝑖(𝜃−𝑖)𝜎∗
−𝑖(𝑠−𝑖|𝜃−𝑖)|ℱ𝑠𝑖,𝜃𝑖

}
= { ̂𝜋 ∈ Δ(Θ0 × Θ−𝑖 × 𝑆−𝑖) ∶ ̂𝜋(𝜃0, 𝜃−𝑖, 𝑠−𝑖)|ℱ𝑠∗

𝑖,𝜃𝑖
= 𝑞0(𝜃0)𝑞−𝑖(𝜃−𝑖)𝜎∗

−𝑖(𝑠−𝑖|𝜃−𝑖)|ℱ𝑠∗
𝑖,𝜃𝑖

}
= Σ̂−𝑖,𝜃𝑖

(𝑠∗
𝑖 , 𝑞−𝑖, 𝜎∗

−𝑖)

Hence we can prove that 𝜎∗ is a Bayesian equilibrium:

𝑈𝑖(𝑠∗
𝑖 , 𝜃𝑖, 𝑞−𝑖, 𝜎∗

−𝑖) = min
𝜋̂∈Σ̂−𝑖,𝜃𝑖 (𝑠∗

𝑖,𝑞−𝑖,𝜎∗
−𝑖)

𝑈𝑖(𝑠∗
𝑖 , 𝜃𝑖, ̂𝜋) ≥ min

𝜋̂∈Σ̂−𝑖,𝜃𝑖 (𝑠𝑖,𝑞−𝑖,𝜎∗
−𝑖)

𝑈𝑖(𝑠∗
𝑖 , 𝜃𝑖, ̂𝜋)

= min
𝜋̂∈Σ̂−𝑖,𝜃𝑖 (𝑠𝑖,𝑞−𝑖,𝜎∗

−𝑖)
𝑈𝑖(𝑠𝑖, 𝜃𝑖, ̂𝜋) = 𝑈𝑖(𝑠𝑖, 𝜃𝑖, 𝑞−𝑖, 𝜎∗

−𝑖)
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